62 lines
187 KiB
HTML
62 lines
187 KiB
HTML
<!DOCTYPE html>
|
|
<head><meta charset="utf-8"></meta>
|
|
<meta content="minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no" name="viewport"></meta>
|
|
<link type="text/css" href="static/css/tabler-icons.min.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/style.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/custom.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/export.css" rel="stylesheet"></link>
|
|
<link href="static/img/logo.png" type="image/png" rel="shortcut icon"></link>
|
|
<link href="static/img/logo.png" sizes="192x192" rel="shortcut icon"></link>
|
|
<link href="static/img/logo.png" rel="apple-touch-icon"></link>
|
|
<meta name="apple-mobile-web-app-title"></meta>
|
|
<meta name="apple-mobile-web-app-capable" content="yes"></meta>
|
|
<meta name="apple-touch-fullscreen" content="yes"></meta>
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"></meta>
|
|
<meta name="mobile-web-app-capable" content="yes"></meta>
|
|
<meta property="og:title"></meta>
|
|
<meta content="site" property="og:type"></meta>
|
|
<meta content="static/img/logo.png" property="og:image"></meta>
|
|
<meta property="og:description"></meta>
|
|
<title></title>
|
|
<meta property="og:site_name"></meta>
|
|
<meta></meta>
|
|
</head>
|
|
<body><div id="root"></div>
|
|
<script>window.logseq_db="[logseq____"~#datascript/DBlogseq____",[logseq____"^ logseq____",logseq____"~:schemalogseq____",[logseq____"^ logseq____",logseq____"~:ast/versionlogseq____",[logseq____"^ logseq____"],logseq____"~:file/contentlogseq____",[logseq____"^ logseq____"],logseq____"~:block/properties-text-valueslogseq____",[logseq____"^ logseq____"],logseq____"~:block/aliaslogseq____",[logseq____"^ logseq____",logseq____"~:db/valueTypelogseq____",logseq____"~:db.type/reflogseq____",logseq____"~:db/cardinalitylogseq____",logseq____"~:db.cardinality/manylogseq____"],logseq____"~:block/pre-block?logseq____",[logseq____"^ logseq____"],logseq____"~:block/uuidlogseq____",[logseq____"^ logseq____",logseq____"~:db/uniquelogseq____",logseq____"~:db.unique/identitylogseq____"],logseq____"~:block/prioritylogseq____",[logseq____"^ logseq____"],logseq____"~:block/propertieslogseq____",[logseq____"^ logseq____"],logseq____"~:block/journal?logseq____",[logseq____"^ logseq____"],logseq____"~:block/namespacelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____"],logseq____"~:block/updated-atlogseq____",[logseq____"^ logseq____"],logseq____"~:block/repeated?logseq____",[logseq____"^ logseq____"],logseq____"~:db/typelogseq____",[logseq____"^ logseq____"],logseq____"~:file/handlelogseq____",[logseq____"^ logseq____"],logseq____"~:block/leftlogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"~:db/indexlogseq____",true],logseq____"~:block/refslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/scheduledlogseq____",[logseq____"^ logseq____"],logseq____"~:block/properties-orderlogseq____",[logseq____"^ logseq____"],logseq____"~:block/created-atlogseq____",[logseq____"^ logseq____"],logseq____"~:block/deadlinelogseq____",[logseq____"^ logseq____"],logseq____"~:block/collapsed?logseq____",[logseq____"^ logseq____",logseq____"^Glogseq____",true],logseq____"~:block/journal-daylogseq____",[logseq____"^ logseq____"],logseq____"~:block/formatlogseq____",[logseq____"^ logseq____"],logseq____"~:block/tagslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/contentlogseq____",[logseq____"^ logseq____"],logseq____"~:recent/pageslogseq____",[logseq____"^ logseq____"],logseq____"~:block/macroslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:db/identlogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:block/path-refslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/parentlogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^Glogseq____",true],logseq____"~:block/typelogseq____",[logseq____"^ logseq____"],logseq____"~:block/pagelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^Glogseq____",true],logseq____"~:block/namelogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:file/pathlogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:block/filelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____"],logseq____"~:block/markerlogseq____",[logseq____"^ logseq____"],logseq____"~:block/original-namelogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:schema/versionlogseq____",[logseq____"^ logseq____"]],logseq____"~:datomslogseq____",[logseq____"~#listlogseq____",[[logseq____"~#datascript/Datomlogseq____",[1,logseq____"^12logseq____",2,536870913]],[logseq____"^15logseq____",[2,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[2,logseq____"^Ylogseq____",logseq____"cardlogseq____",536870913]],[logseq____"^15logseq____",[2,logseq____"^11logseq____",logseq____"cardlogseq____",536870913]],[logseq____"^15logseq____",[2,logseq____"^;logseq____",logseq____"~ueff2cab7-f099-4e7a-a8cc-8a25767a759flogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[3,logseq____"^Ylogseq____",logseq____"canceledlogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^11logseq____",logseq____"CANCELEDlogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^;logseq____",logseq____"~u3cdb6e93-fdb6-48f3-9d06-1832e45032ablogseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[4,logseq____"^Ylogseq____",logseq____"todologseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^11logseq____",logseq____"TODOlogseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^;logseq____",logseq____"~u56d7a49c-e99a-4b13-81cc-d92eb84d9afelogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[5,logseq____"^Ylogseq____",logseq____"nowlogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^11logseq____",logseq____"NOWlogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^;logseq____",logseq____"~u8ae2862a-8070-47d6-8ace-b4ebf844967flogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[6,logseq____"^Ylogseq____",logseq____"laterlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^11logseq____",logseq____"LATERlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^;logseq____",logseq____"~u99acb03b-69e0-48a4-adfd-d6b74b1cb995logseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[7,logseq____"^Ylogseq____",logseq____"donelogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^11logseq____",logseq____"DONElogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^;logseq____",logseq____"~u1dbf5df2-ee39-43aa-8c2f-b1882afa7bd9logseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[8,logseq____"^Ylogseq____",logseq____"doinglogseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^11logseq____",logseq____"DOINGlogseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^;logseq____",logseq____"~u26d89fa1-ca29-4d4e-b7a5-0e539a3d1361logseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[9,logseq____"^Ylogseq____",logseq____"in-progresslogseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^11logseq____",logseq____"IN-PROGRESSlogseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^;logseq____",logseq____"~ubcf64588-4c79-4642-84cc-51cf90ca562alogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[10,logseq____"^Ylogseq____",logseq____"clogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^11logseq____",logseq____"Clogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^;logseq____",logseq____"~u3ee01a44-27cd-4789-9a24-11e1920f5eealogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[11,logseq____"^Ylogseq____",logseq____"blogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^11logseq____",logseq____"Blogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^;logseq____",logseq____"~u4d0f8ded-65c8-4869-9b06-626a6158e7edlogseq____",536870914]],[logseq____"^15logseq____",[12,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[12,logseq____"^Ylogseq____",logseq____"contentslogseq____",536870914]],[logseq____"^15logseq____",[12,logseq____"^11logseq____",logseq____"contentslogseq____",536870917]],[logseq____"^15logseq____",[12,logseq____"^;logseq____",logseq____"~u6525b93b-c9e7-480f-84e6-de723a8d725elogseq____",536870917]],[logseq____"^15logseq____",[13,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[13,logseq____"^Ylogseq____",logseq____"waitinglogseq____",536870914]],[logseq____"^15logseq____",[13,logseq____"^11logseq____",logseq____"WAITINGlogseq____",536870914]],[logseq____"^15logseq____",[13,logseq____"^;logseq____",logseq____"~ue9051a25-41f1-4cdd-9719-6cd43d59e0eelogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[14,logseq____"^Ylogseq____",logseq____"favoriteslogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^11logseq____",logseq____"Favoriteslogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^;logseq____",logseq____"~ub6055162-4ec0-4990-bafb-78fdb904bdd9logseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[15,logseq____"^Ylogseq____",logseq____"alogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^11logseq____",logseq____"Alogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^;logseq____",logseq____"~ueb71c46e-e0c5-4a5f-ba5a-b7f904703e3alogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[16,logseq____"^Ylogseq____",logseq____"cancelledlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^11logseq____",logseq____"CANCELLEDlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^;logseq____",logseq____"~u1c50cdf7-e3c8-4ffa-b4e8-aee07b06a0d6logseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[17,logseq____"^Ylogseq____",logseq____"waitlogseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^11logseq____",logseq____"WAITlogseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^;logseq____",logseq____"~uc133cbfb-5c09-4723-a58c-f318f8307358logseq____",536870914]],[logseq____"^15logseq____",[21,logseq____"^Qlogseq____",logseq____"logseq____",536870917]],[logseq____"^15logseq____",[21,logseq____"^Ologseq____",logseq____"~:markdownlogseq____",536870917]],[logseq____"^15logseq____",[21,logseq____"^Flogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Xlogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Vlogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Ulogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"~:block/unorderedlogseq____",true,536870917]],[logseq____"^15logseq____",[21,logseq____"^;logseq____",logseq____"~u6525b93b-a2a7-428d-9234-3610d7ec2dbflogseq____",536870917]],[logseq____"^15logseq____",[23,logseq____"^Klogseq____",1696971068087,536870918]],[logseq____"^15logseq____",[23,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[23,logseq____"^Ylogseq____",logseq____"quadratische ergänzunglogseq____",536870918]],[logseq____"^15logseq____",[23,logseq____"^11logseq____",logseq____"Quadratische Ergänzunglogseq____",536870918]],[logseq____"^15logseq____",[23,logseq____"^Blogseq____",1696971068087,536870918]],[logseq____"^15logseq____",[23,logseq____"^;logseq____",logseq____"~u6525b93c-3a2b-4029-b176-ee9410fa5969logseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^Klogseq____",1696971068082,536870918]],[logseq____"^15logseq____",[24,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[24,logseq____"^Ylogseq____",logseq____"potenzenlogseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^11logseq____",logseq____"Potenzenlogseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^Blogseq____",1696971068082,536870918]],[logseq____"^15logseq____",[24,logseq____"^;logseq____",logseq____"~u6525b93c-fc91-45e6-90b7-87b81ae8060clogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^Klogseq____",1696971068079,536870918]],[logseq____"^15logseq____",[25,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[25,logseq____"^Ylogseq____",logseq____"pascalsches dreiecklogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^11logseq____",logseq____"Pascalsches Dreiecklogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^Blogseq____",1696971068079,536870918]],[logseq____"^15logseq____",[25,logseq____"^;logseq____",logseq____"~u6525b93c-88e5-4ac1-9316-5ed037effaa9logseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^Klogseq____",1696971068086,536870918]],[logseq____"^15logseq____",[26,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[26,logseq____"^Ylogseq____",logseq____"quadratische gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^11logseq____",logseq____"Quadratische Gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^Blogseq____",1696971068086,536870918]],[logseq____"^15logseq____",[26,logseq____"^;logseq____",logseq____"~u6525b93c-ca95-4a31-9d6c-58765dd92d95logseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^Klogseq____",1696971068089,536870918]],[logseq____"^15logseq____",[27,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[27,logseq____"^Ylogseq____",logseq____"wurzelgleichunglogseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^11logseq____",logseq____"Wurzelgleichunglogseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^Blogseq____",1696971068089,536870918]],[logseq____"^15logseq____",[27,logseq____"^;logseq____",logseq____"~u6525b93c-bbcb-492e-9499-b18c9b880c3blogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^Klogseq____",1696971068073,536870918]],[logseq____"^15logseq____",[28,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[28,logseq____"^Ylogseq____",logseq____"logarithmenlogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^11logseq____",logseq____"Logarithmenlogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^Blogseq____",1696971068073,536870918]],[logseq____"^15logseq____",[28,logseq____"^;logseq____",logseq____"~u6525b93c-da21-473e-bc3b-bb8bb8da501alogseq____",536870923]],[logseq____"^15logseq____",[29,logseq____"^Klogseq____",1696971068080,536870918]],[logseq____"^15logseq____",[29,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[29,logseq____"^Ylogseq____",logseq____"binomialkoeffizientlogseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^11logseq____",logseq____"Binomialkoeffizientlogseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^Blogseq____",1696971068080,536870918]],[logseq____"^15logseq____",[29,logseq____"^;logseq____",logseq____"~u6525b93c-5748-402f-bb67-2e2844c44147logseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^Klogseq____",1696971068072,536870918]],[logseq____"^15logseq____",[30,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[30,logseq____"^Ylogseq____",logseq____"gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^11logseq____",logseq____"Gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^Blogseq____",1696971068072,536870918]],[logseq____"^15logseq____",[30,logseq____"^;logseq____",logseq____"~u6525b93c-e865-4fa9-b3f0-ce7d9b1bc0d8logseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^Klogseq____",1696971068078,536870918]],[logseq____"^15logseq____",[31,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[31,logseq____"^Ylogseq____",logseq____"binomische formelnlogseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^11logseq____",logseq____"Binomische Formelnlogseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^Blogseq____",1696971068078,536870918]],[logseq____"^15logseq____",[31,logseq____"^;logseq____",logseq____"~u6525b93c-87e7-4c2d-84df-de3896af6484logseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^Klogseq____",1696971068076,536870918]],[logseq____"^15logseq____",[32,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[32,logseq____"^Ylogseq____",logseq____"trigonometrielogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^11logseq____",logseq____"Trigonometrielogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^Blogseq____",1696971068076,536870918]],[logseq____"^15logseq____",[32,logseq____"^;logseq____",logseq____"~u6525b93c-5251-4749-8101-8a999f19484alogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^Klogseq____",1696971068083,536870918]],[logseq____"^15logseq____",[33,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[33,logseq____"^Ylogseq____",logseq____"wurzelnlogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^11logseq____",logseq____"Wurzelnlogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^Blogseq____",1696971068083,536870918]],[logseq____"^15logseq____",[33,logseq____"^;logseq____",logseq____"~u6525b93c-b272-419f-ab5b-07f63222d399logseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^Klogseq____",1696971068081,536870918]],[logseq____"^15logseq____",[34,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[34,logseq____"^Ylogseq____",logseq____"pascalsche dreiecklogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^11logseq____",logseq____"Pascalsche Dreiecklogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^Blogseq____",1696971068081,536870918]],[logseq____"^15logseq____",[34,logseq____"^;logseq____",logseq____"~u6525b93c-9fb1-44c9-9cea-b6253ab09796logseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^Klogseq____",1696971068085,536870918]],[logseq____"^15logseq____",[35,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[35,logseq____"^Ylogseq____",logseq____"rationalmachenlogseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^11logseq____",logseq____"Rationalmachenlogseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^Blogseq____",1696971068085,536870918]],[logseq____"^15logseq____",[35,logseq____"^;logseq____",logseq____"~u6525b93c-8e71-4baf-8bf5-427446437f58logseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^Klogseq____",1696971068082,536870918]],[logseq____"^15logseq____",[36,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[36,logseq____"^Ylogseq____",logseq____"auffrischung mathe 1logseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^11logseq____",logseq____"Auffrischung Mathe 1logseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^Blogseq____",1696971068082,536870918]],[logseq____"^15logseq____",[36,logseq____"^;logseq____",logseq____"~u6525b93c-ef18-4bdb-861c-025e80c2c18alogseq____",536870920]],[logseq____"^15logseq____",[37,logseq____"^Klogseq____",1696971068088,536870918]],[logseq____"^15logseq____",[37,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[37,logseq____"^Ylogseq____",logseq____"satz von vietalogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^11logseq____",logseq____"Satz von Vietalogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^Blogseq____",1696971068088,536870918]],[logseq____"^15logseq____",[37,logseq____"^;logseq____",logseq____"~u6525b93c-50b9-4997-bfbc-aff4adbc5f7flogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^Klogseq____",1696971068083,536870918]],[logseq____"^15logseq____",[38,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[38,logseq____"^Ylogseq____",logseq____"fixmelogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^11logseq____",logseq____"FIXMElogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^Blogseq____",1696971068083,536870918]],[logseq____"^15logseq____",[38,logseq____"^;logseq____",logseq____"~u6525b93c-b7f9-4047-95fe-aef058894d87logseq____",536870921]],[logseq____"^15logseq____",[39,logseq____"^Klogseq____",1696971068087,536870918]],[logseq____"^15logseq____",[39,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[39,logseq____"^Ylogseq____",logseq____"pq-formellogseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^11logseq____",logseq____"pq-Formellogseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^Blogseq____",1696971068087,536870918]],[logseq____"^15logseq____",[39,logseq____"^;logseq____",logseq____"~u6525b93c-4255-4a79-905d-3f2eac3db964logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Klogseq____",1696971068067,536870918]],[logseq____"^15logseq____",[40,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[40,logseq____"^Ylogseq____",logseq____"linkslogseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^11logseq____",logseq____"Linkslogseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Blogseq____",1696971068067,536870918]],[logseq____"^15logseq____",[40,logseq____"^;logseq____",logseq____"~u6525b93c-8b2a-41a0-b197-09d75dfc92dalogseq____",536870919]],[logseq____"^15logseq____",[41,logseq____"^Klogseq____",1696971068084,536870918]],[logseq____"^15logseq____",[41,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ylogseq____",logseq____"nennerlogseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^11logseq____",logseq____"Nennerlogseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Blogseq____",1696971068084,536870918]],[logseq____"^15logseq____",[41,logseq____"^;logseq____",logseq____"~u6525b93c-b437-484d-8c53-eff1fcb594d5logseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Klogseq____",1696971068068,536870918]],[logseq____"^15logseq____",[42,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ylogseq____",logseq____"wolframalphalogseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^11logseq____",logseq____"Wolframalphalogseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Blogseq____",1696971068068,536870918]],[logseq____"^15logseq____",[42,logseq____"^;logseq____",logseq____"~u6525b93c-6050-445a-af50-8f4d4035af9elogseq____",536870919]],[logseq____"^15logseq____",[43,logseq____"^Qlogseq____",logseq____"Das [[Pascalsche Dreieck]] lässt sich auch mit den entsprechenden Binomialkoeffizienten darstellenlogseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Flogseq____",66,536870918]],[logseq____"^15logseq____",[43,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[43,logseq____"^Vlogseq____",66,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",29,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[43,logseq____"^Hlogseq____",34,536870918]],[logseq____"^15logseq____",[43,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[43,logseq____"^;logseq____",logseq____"~u6525b93c-1013-40d2-a4aa-dd65e414ff01logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n\\\\begin{align}\\n\\\\tan x logseq____&= \\\\frac{\\\\sin x}{\\\\cos x} logseq____&, \\\\cos x \\\\ne 0\\\\\\\\\\n\\\\sin^{-2}x-\\\\cos^2xlogseq____&=1logseq____&,f\\\\\\\\\\n\\\\sin x = \\\\cos x logseq____&= 1 logseq____&, f\\\\\\\\\\n\\\\sin^{-2}x+cos^2ylogseq____&=1logseq____&,r\\\\\\\\\\n1+tan^2xlogseq____&=\\\\frac1{\\\\cos^2x}logseq____&,\\\\cos x\\\\ne0\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Flogseq____",85,536870918]],[logseq____"^15logseq____",[44,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[44,logseq____"^Vlogseq____",65,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[44,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[44,logseq____"^;logseq____",logseq____"~u6525b93c-36b7-46a0-bc83-999e6ec76056logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n(2x+y)^4logseq____&=(2x)^4+4*(2x)^3y+6*(2x)^2y^2+4*2xy^3+y^4\\\\notag\\\\\\\\\\nlogseq____&=16x^4+32x^3y+24x^2y^2+8xy^3+y^4\\\\\\\\\\n(1+\\\\sqrt x)^5*(1-\\\\sqrt x)^5logseq____&=2+20x+40x^2\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Flogseq____",68,536870918]],[logseq____"^15logseq____",[45,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[45,logseq____"^Vlogseq____",57,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[45,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[45,logseq____"^;logseq____",logseq____"~u6525b93c-ecc8-47a2-be4f-528f1ff1b7a7logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\\\sqrt{x^4+6x^2y+9y^2}logseq____&=\\\\sqrt{(x^2+3y)^2}=x^2+3y\\\\\\\\\\n\\\\sqrt {x + \\\\sqrt{x^2-y^2}}\\\\sqrt{x-\\\\sqrt{x^2-y^2}}logseq____&=\\\\sqrt{\\\\left(x + \\\\sqrt{x^2-y^2}\\\\right)\\\\left(x-\\\\sqrt{x^2-y^2}\\\\right)}\\\\notag\\\\\\\\\\nlogseq____&=\\\\sqrt{x^2-(x^2-y^2)}\\\\notag\\\\\\\\\\nlogseq____&=\\\\sqrt{y^2}=\\\\left|y\\\\right|\\\\\\\\\\n\\\\sqrt[5]{a\\\\sqrt[3]a}=\\\\sqrt[5]{\\\\sqrt[3]{a^3}\\\\sqrt[3]a}\\nlogseq____&=\\\\sqrt[5]{\\\\sqrt[3]{a^4}}\\n=\\\\sqrt[5]{a^\\\\frac43}\\n=a^{\\\\frac43\\\\frac15}=a^\\\\frac4{15}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Flogseq____",70,536870918]],[logseq____"^15logseq____",[46,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[46,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[46,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[46,logseq____"^;logseq____",logseq____"~u6525b93b-a9ec-458f-abc6-569ddb5edccelogseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Qlogseq____",logseq____"# [[Links]]logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Flogseq____",36,536870918]],[logseq____"^15logseq____",[47,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[47,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",40,536870918]],[logseq____"^15logseq____",[47,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"~:headinglogseq____",1],536870918]],[logseq____"^15logseq____",[47,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[47,logseq____"^Hlogseq____",40,536870918]],[logseq____"^15logseq____",[47,logseq____"^17logseq____",false,536870918]],[logseq____"^15logseq____",[47,logseq____"^;logseq____",logseq____"~u6525b93c-3556-422e-adad-11c75cac64c4logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Qlogseq____",logseq____"\\\\begin{array}{c}\\n{0\\\\choose 0}\\n\\\\\\\\\\n{1\\\\choose 0} {1\\\\choose 1}\\n\\\\\\\\\\n{2\\\\choose 0} {2\\\\choose 1} {2\\\\choose 2}\\n\\\\\\\\\\n{3\\\\choose 0} {3\\\\choose 1} {3\\\\choose 2} {3\\\\choose 3}\\n\\\\\\\\\\n\\\\cdots\\n\\\\end{array}logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Flogseq____",43,536870918]],[logseq____"^15logseq____",[48,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[48,logseq____"^Vlogseq____",66,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",29,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[48,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[48,logseq____"^;logseq____",logseq____"~u6525b93c-ac44-4021-8819-b51a0bfbfa59logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n\\\\ln a + \\\\ln b logseq____&= \\\\ln(a*b) \\\\\\\\\\n\\\\ln(-a) logseq____&= \\\\frac1{\\\\ln a}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Flogseq____",50,536870918]],[logseq____"^15logseq____",[49,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[49,logseq____"^Vlogseq____",54,536870918]],[logseq____"^15logseq____",[49,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[49,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[49,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[49,logseq____"^;logseq____",logseq____"~u6525b93c-d456-46ef-88af-014c7db487d0logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n$\\\\text{Wenn } 10^x=y \\\\text{, dann}$\\n\\\\begin{align}\\nxlogseq____&=\\\\lg y logseq____& ,r\\\\\\\\\\nxlogseq____&=\\\\log_y10logseq____&,f\\\\\\\\\\nxlogseq____&=\\\\log_{10}ylogseq____&,r \\\\\\\\\\n\\\\ln 4 - \\\\ln 2 logseq____&= \\\\ln 2 logseq____&, r \\\\\\\\\\n\\\\ln 4 - \\\\ln 2 logseq____&= \\\\ln 8 logseq____&, f \\\\\\\\\\n\\\\ln 4 + \\\\ln 2 logseq____&= \\\\ln 8 logseq____&, r \\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Flogseq____",54,536870918]],[logseq____"^15logseq____",[50,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[50,logseq____"^Vlogseq____",54,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[50,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[50,logseq____"^;logseq____",logseq____"~u6525b93c-2cd4-4329-94e6-53cf3a52af9elogseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche }$[[Gleichungen]]$\\\\text{ sind richtig?}$\\n\\\\begin{align}\\ne^{x+y} logseq____&= e^x + e^y logseq____& ,f \\\\\\\\\\ne^{x+y} logseq____&= e^x * x^y logseq____& ,r \\\\\\\\\\ne^{x+y}logseq____&=e^{xy} logseq____& ,f\\\\\\\\\\ne^{ln(x+y)}logseq____&=x+y logseq____& ,x+ylogseq____>c \\\\\\\\\\ne^{ln(x+y)}logseq____&=e^x*e^ylogseq____&,f\\\\\\\\\\ne^{ln(x+y)}logseq____&=ln(e^x+y)logseq____&,x+ylogseq____>0\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Flogseq____",69,536870918]],[logseq____"^15logseq____",[51,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[51,logseq____"^Vlogseq____",69,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[51,logseq____"^Hlogseq____",30,536870918]],[logseq____"^15logseq____",[51,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[51,logseq____"^;logseq____",logseq____"~u6525b93c-19fd-45a4-b5a3-a04d6699df46logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Flogseq____",54,536870918]],[logseq____"^15logseq____",[52,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[52,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[52,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[52,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[52,logseq____"^Hlogseq____",33,536870918]],[logseq____"^15logseq____",[52,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[52,logseq____"^;logseq____",logseq____"~u6525b93c-0b10-4687-b997-5c342999c2d1logseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Qlogseq____",logseq____"#FIXME $(1+\\\\sqrt x)^5*(1-\\\\sqrt x)^5=2+20x+40x^2$ ist Falschlogseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Flogseq____",45,536870918]],[logseq____"^15logseq____",[53,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[53,logseq____"^Vlogseq____",45,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[53,logseq____"^Hlogseq____",38,536870918]],[logseq____"^15logseq____",[53,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[53,logseq____"^;logseq____",logseq____"~u6525b93c-a94b-430b-bcb0-e20c84efae56logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Logarithmen]]logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Flogseq____",69,536870918]],[logseq____"^15logseq____",[54,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[54,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[54,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[54,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[54,logseq____"^Hlogseq____",28,536870918]],[logseq____"^15logseq____",[54,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[54,logseq____"^;logseq____",logseq____"~u6525b93c-b243-49d1-8aa7-a466c1cb4038logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n$\\\\text{Wenn }alogseq____>0\\\\text{, dann}$\\n\\\\begin{align}\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a\\\\sqrt{a}logseq____&,r\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a^2-\\\\sqrt{a}logseq____&,f\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=\\\\sqrt{a^3}logseq____&,r\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a^{\\\\frac32}logseq____&,r\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Flogseq____",52,536870918]],[logseq____"^15logseq____",[55,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[55,logseq____"^Vlogseq____",52,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[55,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[55,logseq____"^;logseq____",logseq____"~u6525b93c-9d8a-4b08-9f75-1bca72e16337logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Qlogseq____",logseq____"# [[Wurzelgleichung]]logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Flogseq____",78,536870918]],[logseq____"^15logseq____",[56,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[56,logseq____"^Vlogseq____",67,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[56,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[56,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[56,logseq____"^Hlogseq____",27,536870918]],[logseq____"^15logseq____",[56,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[56,logseq____"^;logseq____",logseq____"~u6525b93b-0cfe-4ca9-a4b1-488446b6e565logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Qlogseq____",logseq____"## [[Pascalsches Dreieck]]logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Flogseq____",93,536870918]],[logseq____"^15logseq____",[57,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[57,logseq____"^Vlogseq____",82,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[57,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[57,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[57,logseq____"^Hlogseq____",25,536870918]],[logseq____"^15logseq____",[57,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[57,logseq____"^;logseq____",logseq____"~u6525b93c-ffd8-4eb5-86c1-d5b552713775logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Qlogseq____",logseq____"# Was ist Größer?logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Flogseq____",52,536870918]],[logseq____"^15logseq____",[58,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[58,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[58,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[58,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[58,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[58,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[58,logseq____"^;logseq____",logseq____"~u6525b93c-fe5d-4a00-a54a-5645f52c0d3alogseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n(a+b)^2logseq____&=a^2+2ab+b^2logseq____&,\\\\text{ 1. Binomische Formel}\\\\\\\\\\n(a-b)^2logseq____&=a^2-2ab+b^2logseq____&,\\\\text{ 2. Binomische Formel}\\\\\\\\\\n(a+b)(a-b)logseq____&=a^2-b^2logseq____&,\\\\text{ 3. Binomische Formel}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Flogseq____",82,536870918]],[logseq____"^15logseq____",[59,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[59,logseq____"^Vlogseq____",82,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[59,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[59,logseq____"^;logseq____",logseq____"~u6525b93c-9876-4f5e-a064-d3ecbd11c9a6logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Qlogseq____",logseq____"# [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Flogseq____",94,536870918]],[logseq____"^15logseq____",[60,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[60,logseq____"^Vlogseq____",67,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[60,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[60,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[60,logseq____"^Hlogseq____",33,536870918]],[logseq____"^15logseq____",[60,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[60,logseq____"^;logseq____",logseq____"~u6525b93b-e5b4-4c0e-b695-b56de7d4df47logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Qlogseq____",logseq____"Einsetzen, um zu überprüfen, ob man eine Fallunterscheidung brauchtlogseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Flogseq____",71,536870918]],[logseq____"^15logseq____",[61,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[61,logseq____"^Vlogseq____",56,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[61,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[61,logseq____"^;logseq____",logseq____"~u6525b93b-e2cb-4f66-b10c-f2cab9de7c1elogseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Qlogseq____",logseq____"$\\\\text{Herleitung mit }$[[Quadratische Ergänzung]]\\n\\\\begin{align}\\nx^2+px+qlogseq____&=0logseq____&|logseq____&-q\\\\\\\\\\nx^2+pxlogseq____&=-qlogseq____&|logseq____&+\\\\left(\\\\frac p2\\\\right)^2\\\\\\\\\\nx^2+px+\\\\left(\\\\frac p2\\\\right)^2logseq____&=-q+\\\\left(\\\\frac p2\\\\right)^2\\\\\\\\\\n\\\\underbrace{\\\\left(x+\\\\frac p2\\\\right)^2}_\\\\text{1. binomische Formel}logseq____&=-q+\\\\left(\\\\frac p2\\\\right)^2logseq____&|logseq____&\\\\sqrt{()}\\\\\\\\\\n\\\\left|x+\\\\frac p2\\\\right|logseq____&=\\\\sqrt{\\\\frac{p^2}4-q}logseq____&,logseq____&\\\\text{ falls }\\\\frac{p^2}4-q\\\\ge0\\\\\\\\\\nx+\\\\frac p2logseq____&=\\\\pm\\\\sqrt{\\\\frac{p^2}4-q}logseq____&|logseq____&-\\\\frac p2\\\\\\\\\\nxlogseq____&=-\\\\frac p2\\\\pm\\\\sqrt{\\\\frac{p^2}4-q}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Flogseq____",72,536870918]],[logseq____"^15logseq____",[62,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[62,logseq____"^Vlogseq____",72,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",23,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[62,logseq____"^Hlogseq____",23,536870918]],[logseq____"^15logseq____",[62,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[62,logseq____"^;logseq____",logseq____"~u6525b93b-cffc-43ca-b30f-9522ff4e7ddalogseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Qlogseq____",logseq____"![draws/2023-10-08-21-23-31.excalidraw](../assets/excalidraw_svg/2023-10-08-21-23-31.svg)logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Flogseq____",51,536870918]],[logseq____"^15logseq____",[63,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[63,logseq____"^Vlogseq____",69,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[63,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[63,logseq____"^;logseq____",logseq____"~u6525b93c-e3b9-4208-89de-ce8155dceff8logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\nax^2+bx+clogseq____&=0logseq____&|:a\\\\quadlogseq____&a\\\\ne0\\\\\\\\\\nx^2+\\\\frac ba x + \\\\frac ca logseq____&= 0\\\\\\\\\\nplogseq____&=\\\\frac ba,logseq____&q = \\\\frac ca\\\\\\\\\\nx^2+px+qlogseq____&=0\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Flogseq____",78,536870918]],[logseq____"^15logseq____",[64,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[64,logseq____"^Vlogseq____",78,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[64,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[64,logseq____"^;logseq____",logseq____"~u6525b93b-8494-434a-bbc9-57258321a2d3logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Trigonometrie]]logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Flogseq____",58,536870918]],[logseq____"^15logseq____",[65,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[65,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[65,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[65,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[65,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[65,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[65,logseq____"^;logseq____",logseq____"~u6525b93c-f156-4b65-a847-35b3be63183clogseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Qlogseq____",logseq____"## [[Binomialkoeffizient]]logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Flogseq____",45,536870918]],[logseq____"^15logseq____",[66,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[66,logseq____"^Vlogseq____",57,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",29,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[66,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[66,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[66,logseq____"^Hlogseq____",29,536870918]],[logseq____"^15logseq____",[66,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[66,logseq____"^;logseq____",logseq____"~u6525b93c-434c-4772-bebc-965698d72bddlogseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Qlogseq____",logseq____"# [[Potenzen]] und [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Flogseq____",82,536870918]],[logseq____"^15logseq____",[67,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[67,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[67,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[67,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[67,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[67,logseq____"^Hlogseq____",33,536870918]],[logseq____"^15logseq____",[67,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[67,logseq____"^;logseq____",logseq____"~u6525b93b-1b45-47c9-8738-253b9e0a5252logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Qlogseq____",logseq____"\\\\begin{array}{c} (a+b)^0logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&1 \\\\\\\\\\n(a+b)^1logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&1 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^2logseq____&logseq____&logseq____&logseq____&logseq____&logseq____& 1 logseq____&logseq____& 2 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^3logseq____&logseq____&logseq____&logseq____&logseq____&1 logseq____&logseq____& 3 logseq____&logseq____& 3 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^4logseq____&logseq____&logseq____&logseq____& 1 logseq____&logseq____& 4 logseq____&logseq____& 6 logseq____&logseq____& 4 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^5logseq____&logseq____&logseq____& 1 logseq____&logseq____& 5 logseq____&logseq____& 10 logseq____&logseq____& 10 logseq____&logseq____& 5 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^6logseq____&logseq____& 1 logseq____&logseq____& 6 logseq____&logseq____& 15 logseq____&logseq____& 20 logseq____&logseq____& 15 logseq____&logseq____& 6 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^7logseq____&1 logseq____&logseq____& 7 logseq____&logseq____&21 logseq____&logseq____& 35 logseq____&logseq____& 35 logseq____&logseq____& \\\\cdots\\\\end{array}logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Flogseq____",57,536870918]],[logseq____"^15logseq____",[68,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[68,logseq____"^Vlogseq____",57,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[68,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[68,logseq____"^;logseq____",logseq____"~u6525b93c-ea9c-4752-91b1-e04115b8a01clogseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Potenzen]]logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Flogseq____",47,536870918]],[logseq____"^15logseq____",[69,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[69,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[69,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[69,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[69,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[69,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[69,logseq____"^;logseq____",logseq____"~u6525b93c-5997-4eef-be82-854965fc2bd8logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\n\\\\sqrt[n]{a^n}logseq____&=1^\\\\frac nn=a^1=a\\\\\\\\\\n\\\\sqrt[n]{\\\\frac ab} logseq____&= \\\\frac{\\\\sqrt[n]a}{\\\\sqrt[n]b}\\\\\\\\\\n\\\\left(\\\\sqrt[n]a\\\\right)^mlogseq____&=a^\\\\frac mn\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Flogseq____",75,536870918]],[logseq____"^15logseq____",[70,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[70,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[70,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[70,logseq____"^;logseq____",logseq____"~u6525b93b-b09b-4a34-bcd4-da40a0b94177logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\n\\\\sqrt{a+5}-\\\\sqrt{x+3}logseq____&=2\\\\sqrt(x+1) logseq____&|logseq____&()^2\\\\\\\\\\n\\\\left(\\\\sqrt{x+5}-\\\\sqrt{x+3}\\\\right)^2logseq____&=4(x+1)\\\\\\\\\\n(x+5)-2\\\\sqrt{x+5}\\\\sqrt{x+3}+(x+3)logseq____&=4x+4logseq____&|logseq____&-(2x+8)\\\\\\\\\\n-2\\\\sqrt{(x+5)(x+3)}logseq____&=2x-4 logseq____&|logseq____&()^2\\\\\\\\\\n4(x+5)(x+3)logseq____&=4x^2-16x+16\\\\\\\\\\n4x^2+32x+60logseq____&=4x^2-16x+16logseq____&|logseq____&-4x^2+16x-16\\\\\\\\\\n48x+44logseq____&=0\\\\quad x=-\\\\frac{11}{12}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Flogseq____",56,536870918]],[logseq____"^15logseq____",[71,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[71,logseq____"^Vlogseq____",56,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[71,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[71,logseq____"^;logseq____",logseq____"~u6525b93b-f4c5-434e-aeb7-9621d8c1547dlogseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Qlogseq____",logseq____"## [[pq-Formel]]logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Flogseq____",64,536870918]],[logseq____"^15logseq____",[72,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[72,logseq____"^Vlogseq____",78,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[72,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[72,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[72,logseq____"^Hlogseq____",39,536870918]],[logseq____"^15logseq____",[72,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[72,logseq____"^;logseq____",logseq____"~u6525b93b-c4a5-4bd4-a5fe-41d986474e29logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n(a+b)^3(a^2+b^2)^3(a-b)^3logseq____&=(a^2+b^2)^3\\\\left((a+b)(a-b)\\\\right)^3\\\\notag\\\\\\\\\\nlogseq____&=(a^2+b^2)^3(a^2-b^2)^3\\\\notag\\\\\\\\\\nlogseq____&=\\\\left((a^2+b^2)(a^2-b^2)\\\\right)^3\\\\notag\\\\\\\\\\nlogseq____&=(a^4-b^4)^3\\\\\\\\\\n\\\\frac{a-b}{(a+b)^{-1}}logseq____&=(a-b)(a+b)\\\\notag\\\\\\\\\\nlogseq____&=a^2-b^2\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Flogseq____",79,536870918]],[logseq____"^15logseq____",[73,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[73,logseq____"^Vlogseq____",94,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[73,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[73,logseq____"^;logseq____",logseq____"~u6525b93b-4526-42fd-886c-90f851d1491flogseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Qlogseq____",logseq____"$\\\\text{Alte Schreibweise}$\\n\\\\begin{align}\\n\\\\text{cosa }logseq____&\\\\text{plus }logseq____&\\\\text{cubus }logseq____&\\\\text{acq }logseq____&6\\\\\\\\\\nxlogseq____&+logseq____&x^3logseq____&=logseq____&6\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Flogseq____",73,536870918]],[logseq____"^15logseq____",[74,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[74,logseq____"^Vlogseq____",94,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[74,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[74,logseq____"^;logseq____",logseq____"~u6525b93b-7167-4c39-8173-878d8ac1cca6logseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Qlogseq____",logseq____"$\\\\text{Die Lösung von } x^n-a=0 \\\\text{ ist } x=\\\\sqrt[n]a$ #FIXME ich glaube hier fehlt logseq____>0 constraintlogseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Flogseq____",60,536870918]],[logseq____"^15logseq____",[75,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[75,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[75,logseq____"^Hlogseq____",38,536870918]],[logseq____"^15logseq____",[75,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[75,logseq____"^;logseq____",logseq____"~u6525b93b-81c2-4dd8-8c7e-99e698abce11logseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Qlogseq____",logseq____"#FIXME gleichung (50) hat angeblich noch ne Zeile $=x^0+3ylogseq____>0$ welche keinen Sinn ergibtlogseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Flogseq____",46,536870918]],[logseq____"^15logseq____",[76,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[76,logseq____"^Vlogseq____",46,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[76,logseq____"^Hlogseq____",38,536870918]],[logseq____"^15logseq____",[76,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[76,logseq____"^;logseq____",logseq____"~u6525b93b-3537-409b-a759-683abe6aeaf3logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\\\underbrace{\\\\frac6{2+\\\\sqrt2}*\\\\frac{2-\\\\sqrt2}{2-\\\\sqrt2}\\n= \\\\frac{6(2-\\\\sqrt2)}{2^2-(\\\\sqrt2)^2}}_\\\\text{3. binomische Formel}\\nlogseq____&=\\\\frac{6(2-\\\\sqrt2)}2=3(2-\\\\sqrt2)\\\\\\\\\\n\\\\frac{a-b}{\\\\sqrt a+\\\\sqrt b}logseq____&=\\\\frac{a-b}{\\\\sqrt a + \\\\sqrt b}\\\\frac{\\\\sqrt a-\\\\sqrt b}{\\\\sqrt a-\\\\sqrt b}logseq____&, a,b,logseq____>0\\\\notag\\\\\\\\\\n=\\\\frac{(a-b)(\\\\sqrt a-\\\\sqrt b)}{(a-b)}logseq____&=\\\\sqrt a\\\\sqrt b\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Flogseq____",89,536870918]],[logseq____"^15logseq____",[77,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[77,logseq____"^Vlogseq____",81,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",41,536870918]],[logseq____"^15logseq____",[77,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[77,logseq____"^;logseq____",logseq____"~u6525b93b-1383-4d69-8e1e-e1ae33c7cc9blogseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Qlogseq____",logseq____"# [[Quadratische Gleichungen]]logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Flogseq____",60,536870918]],[logseq____"^15logseq____",[78,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[78,logseq____"^Vlogseq____",67,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[78,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[78,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[78,logseq____"^Hlogseq____",26,536870918]],[logseq____"^15logseq____",[78,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[78,logseq____"^;logseq____",logseq____"~u6525b93b-6ed1-4a60-82a0-60375bfda512logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\na^nlogseq____&=\\\\underbrace{a*a*\\\\cdots*n}_n logseq____& a,blogseq____>0\\\\\\\\\\na^2b^2logseq____&=(ab)^n\\\\\\\\\\n\\\\frac{a^n}{b^n}logseq____&=\\\\left(\\\\frac ab\\\\right)^n\\\\\\\\\\na^na^mlogseq____&=a^{n+m}\\\\\\\\\\n\\\\frac1{a^n}logseq____&=a^{-n}\\\\\\\\\\n(a^n)^mlogseq____&=a^{nm}\\\\\\\\\\na^0logseq____&=1\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Flogseq____",94,536870918]],[logseq____"^15logseq____",[79,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[79,logseq____"^Vlogseq____",94,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[79,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[79,logseq____"^;logseq____",logseq____"~u6525b93b-f734-42b8-aee9-deb1b8c097eclogseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Qlogseq____",logseq____"$\\\\text{Häufige Falle:}$\\n\\\\begin{align}\\n\\\\left((-1)^2\\\\right)^\\\\frac12logseq____&=(-1)^\\\\frac22logseq____&=(-1)^1logseq____&=-1\\\\\\\\\\n\\\\left((-1)^2\\\\right)^\\\\frac12logseq____&=1^\\\\frac12logseq____&logseq____&=1\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Flogseq____",55,536870918]],[logseq____"^15logseq____",[80,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[80,logseq____"^Vlogseq____",52,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[80,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[80,logseq____"^;logseq____",logseq____"~u6525b93c-8a97-4679-b86b-14be00dafd0alogseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Qlogseq____",logseq____"## [[Rationalmachen]] des [[Nenner]]slogseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Flogseq____",88,536870918]],[logseq____"^15logseq____",[81,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[81,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",41,536870918]],[logseq____"^15logseq____",[81,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[81,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[81,logseq____"^Hlogseq____",35,536870918]],[logseq____"^15logseq____",[81,logseq____"^Hlogseq____",41,536870918]],[logseq____"^15logseq____",[81,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[81,logseq____"^;logseq____",logseq____"~u6525b93b-551e-44c3-b330-4dcc7ab91877logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Qlogseq____",logseq____"# [[Binomische Formeln]]logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Flogseq____",65,536870918]],[logseq____"^15logseq____",[82,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[82,logseq____"^Vlogseq____",36,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[82,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[82,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[82,logseq____"^Hlogseq____",31,536870918]],[logseq____"^15logseq____",[82,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[82,logseq____"^;logseq____",logseq____"~u6525b93c-2119-4878-b6e9-f8d733b77243logseq____",536870918]],[logseq____"^15logseq____",[83,logseq____"^Qlogseq____",logseq____"https://www.wolframalpha.comlogseq____",536870918]],[logseq____"^15logseq____",[83,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[83,logseq____"^Flogseq____",95,536870918]],[logseq____"^15logseq____",[83,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[83,logseq____"^Vlogseq____",95,536870918]],[logseq____"^15logseq____",[83,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[83,logseq____"^Ulogseq____",40,536870918]],[logseq____"^15logseq____",[83,logseq____"^Ulogseq____",42,536870918]],[logseq____"^15logseq____",[83,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[83,logseq____"^;logseq____",logseq____"~u6525b93c-698f-4f02-b4f6-9c827dc79481logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Qlogseq____",logseq____"cosa -logseq____> beliebige Variable\\ncubus -logseq____> hoch 3logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Flogseq____",74,536870918]],[logseq____"^15logseq____",[84,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[84,logseq____"^Vlogseq____",74,536870918]],[logseq____"^15logseq____",[84,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[84,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[84,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[84,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[84,logseq____"^;logseq____",logseq____"~u6525b93b-4dd1-46ac-8f7e-a847183d43balogseq____",536870918]],[logseq____"^15logseq____",[85,logseq____"^Qlogseq____",logseq____"$\\\\frac12 \\\\sqrt2, \\\\frac12, \\\\frac12\\\\sqrt3 \\\\text{ sind werte von }\\\\sin x$\\n\\\\begin{align}\\n\\\\sin 30\\\\degreelogseq____&=\\\\frac12\\\\\\\\\\n\\\\sin 45\\\\degree logseq____&= \\\\frac12\\\\sqrt2 \\\\\\\\\\n\\\\sin 60\\\\degree logseq____&= \\\\frac12 \\\\sqrt3 \\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[85,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[85,logseq____"^Flogseq____",65,536870918]],[logseq____"^15logseq____",[85,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[85,logseq____"^Vlogseq____",65,536870918]],[logseq____"^15logseq____",[85,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[85,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[85,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[85,logseq____"^;logseq____",logseq____"~u6525b93c-df47-49ee-8598-1d021c60a57dlogseq____",536870918]],[logseq____"^15logseq____",[86,logseq____"^Qlogseq____",logseq____"#FIXME $\\\\sin^{-2}x+cos^2y=1,r$ ist falschlogseq____",536870918]],[logseq____"^15logseq____",[86,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[86,logseq____"^Flogseq____",44,536870918]],[logseq____"^15logseq____",[86,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[86,logseq____"^Vlogseq____",44,536870918]],[logseq____"^15logseq____",[86,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[86,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[86,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[86,logseq____"^Hlogseq____",38,536870918]],[logseq____"^15logseq____",[86,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[86,logseq____"^;logseq____",logseq____"~u6525b93c-86c4-4216-9b28-03a4c799e8b3logseq____",536870918]],[logseq____"^15logseq____",[87,logseq____"^Qlogseq____",logseq____"[[Satz von Vieta]]\\n\\\\begin{align}\\nx^2+px+qlogseq____&=0 logseq____&logseq____& \\\\text{habe }x_{1,2}\\\\text{ als Lösung}\\\\\\\\\\nx_1+x_2logseq____&=-p logseq____&logseq____& x_1*x_2=q\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[87,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[87,logseq____"^Flogseq____",62,536870918]],[logseq____"^15logseq____",[87,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[87,logseq____"^Vlogseq____",72,536870918]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[87,logseq____"^Hlogseq____",37,536870918]],[logseq____"^15logseq____",[87,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[87,logseq____"^;logseq____",logseq____"~u6525b93b-2c7a-484f-9f80-5192791f0ed3logseq____",536870918]],[logseq____"^15logseq____",[88,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n|y|logseq____&=\\\\begin{cases}\\ny logseq____&\\\\text{ falls } y\\\\ge0\\\\\\\\\\n-y logseq____&\\\\text{ falls } ylogseq____<0\\\\\\\\\\n\\\\end{cases}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[88,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[88,logseq____"^Flogseq____",46,536870918]],[logseq____"^15logseq____",[88,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[88,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[88,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[88,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[88,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[88,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[88,logseq____"^;logseq____",logseq____"~u6525b93b-96dd-4ca4-8721-a9fe4e401580logseq____",536870918]],[logseq____"^15logseq____",[89,logseq____"^Qlogseq____",logseq____"$\\\\text{Wenn }alogseq____>0\\\\text{, dann}$\\n\\\\begin{align}\\n\\\\frac b{\\\\sqrt a} = \\\\frac b{\\\\sqrt a}*\\\\frac{\\\\sqrt a}{\\\\sqrt a} = \\\\frac {b\\\\sqrt a}a\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[89,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[89,logseq____"^Flogseq____",81,536870918]],[logseq____"^15logseq____",[89,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[89,logseq____"^Vlogseq____",81,536870918]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",41,536870918]],[logseq____"^15logseq____",[89,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[89,logseq____"^;logseq____",logseq____"~u6525b93b-f0dc-418e-bfc2-a49cc39d4928logseq____",536870918]],[logseq____"^15logseq____",[90,logseq____"^Qlogseq____",logseq____"$\\\\text{Für } x=\\\\frac25 \\\\text{ und } y=\\\\frac37 \\\\text{ ist }\\\\frac xy$\\n\\\\begin{align}\\n\\\\frac xy = \\\\frac{\\\\frac25}{\\\\frac37} = \\\\frac{2*7}{3*5}=\\\\frac{14}{15}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[90,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[90,logseq____"^Flogseq____",58,536870918]],[logseq____"^15logseq____",[90,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[90,logseq____"^Vlogseq____",58,536870918]],[logseq____"^15logseq____",[90,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[90,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[90,logseq____"^;logseq____",logseq____"~u6525b93c-547d-4ef0-a315-f4295dddd780logseq____",536870918]],[logseq____"^15logseq____",[91,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel}$\\n\\\\begin{align}\\nx^4-34x^2+225logseq____&=0\\\\\\\\\\n\\\\text{substituiert }ylogseq____&=x^2\\\\\\\\\\ny^2-34y+225logseq____&=0\\\\\\\\\\ny_{1,2}logseq____&=17\\\\pm\\\\sqrt{(-17)^2-225}\\\\\\\\\\nlogseq____&=17\\\\pm\\\\sqrt{289-225}\\nlogseq____&=17\\\\pm\\\\sqrt{64}=17\\\\pm8\\\\\\\\\\nlogseq____&=\\\\left.\\\\begin{cases}\\n25\\\\\\\\\\n9\\n\\\\end{cases}\\\\right|\\\\begin{array}{l}\\nx^2=25logseq____&\\\\rightarrow logseq____&x_1=5;logseq____&x_2=-5\\\\\\\\\\nx^2=9logseq____&\\\\rightarrow logseq____&x_1=3;logseq____&x_2=-3\\\\\\\\\\n\\\\end{array}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[91,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[91,logseq____"^Flogseq____",87,536870918]],[logseq____"^15logseq____",[91,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[91,logseq____"^Vlogseq____",72,536870918]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[91,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[91,logseq____"^;logseq____",logseq____"~u6525b93b-0189-4e3e-b5c9-24f4a81fcc0dlogseq____",536870918]],[logseq____"^15logseq____",[92,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel}$\\n$\\\\text{Welche quadratische Gleichung hat die Lösung}$\\n$x_1=3\\\\quad x_2=4$\\n\\\\begin{align}\\nx_1+x_2 = 7 logseq____&= p logseq____&, x_1x_2=12=q\\\\\\\\\\nx^2+px+qlogseq____&=0\\\\\\\\\\nx^2-7x+12logseq____&=0\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[92,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[92,logseq____"^Flogseq____",87,536870918]],[logseq____"^15logseq____",[92,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[92,logseq____"^Vlogseq____",87,536870918]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[92,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[92,logseq____"^;logseq____",logseq____"~u6525b93b-519d-4668-ae9f-f676c7639f7blogseq____",536870918]],[logseq____"^15logseq____",[93,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel für die 3. Binomische Formel}$\\n\\\\begin{align}\\n\\\\frac{\\\\frac1{a-b}+\\\\frac1{a+b}}{\\\\frac1{a-b}-\\\\frac1{a+b}}\\nlogseq____&=\\\\frac{\\\\frac{a+b+a-b}{(a+b)*(a-b)}}{\\\\frac{a+b-(a-b)}{(a+b)*(a-b)}}\\nlogseq____&=\\\\frac{a+b+a-b}{a+b-a+b}\\nlogseq____&=\\\\frac{2a}{2b}\\nlogseq____&=\\\\frac ab\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[93,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[93,logseq____"^Flogseq____",59,536870918]],[logseq____"^15logseq____",[93,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[93,logseq____"^Vlogseq____",82,536870918]],[logseq____"^15logseq____",[93,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[93,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[93,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[93,logseq____"^;logseq____",logseq____"~u6525b93c-d37c-4963-85fd-187c18567722logseq____",536870918]],[logseq____"^15logseq____",[94,logseq____"^Qlogseq____",logseq____"# [[Potenzen]]logseq____",536870918]],[logseq____"^15logseq____",[94,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[94,logseq____"^Flogseq____",67,536870918]],[logseq____"^15logseq____",[94,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[94,logseq____"^Vlogseq____",67,536870918]],[logseq____"^15logseq____",[94,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[94,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[94,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[94,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[94,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[94,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[94,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[94,logseq____"^;logseq____",logseq____"~u6525b93b-c90d-434e-a656-d67e682e3ed8logseq____",536870918]],[logseq____"^15logseq____",[95,logseq____"^Qlogseq____",logseq____"[[Wolframalpha]]logseq____",536870918]],[logseq____"^15logseq____",[95,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[95,logseq____"^Flogseq____",47,536870918]],[logseq____"^15logseq____",[95,logseq____"^Xlogseq____",36,536870918]],[logseq____"^15logseq____",[95,logseq____"^Vlogseq____",47,536870918]],[logseq____"^15logseq____",[95,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[95,logseq____"^Ulogseq____",40,536870918]],[logseq____"^15logseq____",[95,logseq____"^Ulogseq____",42,536870918]],[logseq____"^15logseq____",[95,logseq____"^Hlogseq____",42,536870918]],[logseq____"^15logseq____",[95,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[95,logseq____"^;logseq____",logseq____"~u6525b93c-c37a-47e4-afc4-9624ccd2b2f6logseq____",536870918]],[logseq____"^15logseq____",[97,logseq____"^Klogseq____",1696971068228,536870919]],[logseq____"^15logseq____",[97,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[97,logseq____"^Ylogseq____",logseq____"auffrischung mathe 2logseq____",536870919]],[logseq____"^15logseq____",[97,logseq____"^11logseq____",logseq____"Auffrischung Mathe 2logseq____",536870919]],[logseq____"^15logseq____",[97,logseq____"^Blogseq____",1696971068228,536870919]],[logseq____"^15logseq____",[97,logseq____"^;logseq____",logseq____"~u6525b93c-24ca-426c-ba23-d09f1c287e1flogseq____",536870920]],[logseq____"^15logseq____",[98,logseq____"^Qlogseq____",logseq____"# [[Links]]logseq____",536870919]],[logseq____"^15logseq____",[98,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[98,logseq____"^Flogseq____",97,536870919]],[logseq____"^15logseq____",[98,logseq____"^Xlogseq____",97,536870919]],[logseq____"^15logseq____",[98,logseq____"^Vlogseq____",97,536870919]],[logseq____"^15logseq____",[98,logseq____"^Ulogseq____",40,536870919]],[logseq____"^15logseq____",[98,logseq____"^Ulogseq____",97,536870919]],[logseq____"^15logseq____",[98,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870919]],[logseq____"^15logseq____",[98,logseq____"^Jlogseq____",[],536870919]],[logseq____"^15logseq____",[98,logseq____"^Hlogseq____",40,536870919]],[logseq____"^15logseq____",[98,logseq____"^17logseq____",false,536870919]],[logseq____"^15logseq____",[98,logseq____"^;logseq____",logseq____"~u6525b93c-8200-4983-b25b-bf014cb4c5a3logseq____",536870919]],[logseq____"^15logseq____",[99,logseq____"^Qlogseq____",logseq____"[[Wolframalpha]]logseq____",536870919]],[logseq____"^15logseq____",[99,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[99,logseq____"^Flogseq____",98,536870919]],[logseq____"^15logseq____",[99,logseq____"^Xlogseq____",97,536870919]],[logseq____"^15logseq____",[99,logseq____"^Vlogseq____",98,536870919]],[logseq____"^15logseq____",[99,logseq____"^Ulogseq____",40,536870919]],[logseq____"^15logseq____",[99,logseq____"^Ulogseq____",42,536870919]],[logseq____"^15logseq____",[99,logseq____"^Ulogseq____",97,536870919]],[logseq____"^15logseq____",[99,logseq____"^Hlogseq____",42,536870919]],[logseq____"^15logseq____",[99,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[99,logseq____"^;logseq____",logseq____"~u6525b93c-bf0a-4efe-94d4-21471eb6af5elogseq____",536870919]],[logseq____"^15logseq____",[100,logseq____"^Qlogseq____",logseq____"https://www.wolframalpha.comlogseq____",536870919]],[logseq____"^15logseq____",[100,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[100,logseq____"^Flogseq____",99,536870919]],[logseq____"^15logseq____",[100,logseq____"^Xlogseq____",97,536870919]],[logseq____"^15logseq____",[100,logseq____"^Vlogseq____",99,536870919]],[logseq____"^15logseq____",[100,logseq____"^Ulogseq____",40,536870919]],[logseq____"^15logseq____",[100,logseq____"^Ulogseq____",42,536870919]],[logseq____"^15logseq____",[100,logseq____"^Ulogseq____",97,536870919]],[logseq____"^15logseq____",[100,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[100,logseq____"^;logseq____",logseq____"~u6525b93c-b193-461c-a6d4-7e6f92731528logseq____",536870919]],[logseq____"^15logseq____",[101,logseq____"^Qlogseq____",logseq____"logseq____",536870919]],[logseq____"^15logseq____",[101,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[101,logseq____"^Flogseq____",98,536870919]],[logseq____"^15logseq____",[101,logseq____"^Xlogseq____",97,536870919]],[logseq____"^15logseq____",[101,logseq____"^Vlogseq____",97,536870919]],[logseq____"^15logseq____",[101,logseq____"^Ulogseq____",97,536870919]],[logseq____"^15logseq____",[101,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[101,logseq____"^;logseq____",logseq____"~u6525b93c-ff38-4664-b43d-8c255cb124f6logseq____",536870919]],[logseq____"^15logseq____",[103,logseq____"^Klogseq____",1696971068256,536870920]],[logseq____"^15logseq____",[103,logseq____"^@logseq____",false,536870920]],[logseq____"^15logseq____",[103,logseq____"^Ylogseq____",logseq____"auffrischung mathelogseq____",536870920]],[logseq____"^15logseq____",[103,logseq____"^11logseq____",logseq____"Auffrischung Mathelogseq____",536870920]],[logseq____"^15logseq____",[103,logseq____"^Blogseq____",1696971068256,536870920]],[logseq____"^15logseq____",[103,logseq____"^;logseq____",logseq____"~u6525b93c-70b0-4d49-906b-4b43622edee9logseq____",536870927]],[logseq____"^15logseq____",[104,logseq____"^Klogseq____",1696971068257,536870920]],[logseq____"^15logseq____",[104,logseq____"^@logseq____",false,536870920]],[logseq____"^15logseq____",[104,logseq____"^Ylogseq____",logseq____"auffrischung mathe 3logseq____",536870920]],[logseq____"^15logseq____",[104,logseq____"^11logseq____",logseq____"Auffrischung Mathe 3logseq____",536870920]],[logseq____"^15logseq____",[104,logseq____"^Blogseq____",1696971068257,536870920]],[logseq____"^15logseq____",[104,logseq____"^;logseq____",logseq____"~u6525b93c-c7b7-4f14-8b89-20b37b8ffb54logseq____",536870920]],[logseq____"^15logseq____",[105,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 1]]logseq____",536870920]],[logseq____"^15logseq____",[105,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[105,logseq____"^Flogseq____",103,536870920]],[logseq____"^15logseq____",[105,logseq____"^Xlogseq____",103,536870920]],[logseq____"^15logseq____",[105,logseq____"^Vlogseq____",103,536870920]],[logseq____"^15logseq____",[105,logseq____"^Ulogseq____",36,536870920]],[logseq____"^15logseq____",[105,logseq____"^Ulogseq____",103,536870920]],[logseq____"^15logseq____",[105,logseq____"^Hlogseq____",36,536870920]],[logseq____"^15logseq____",[105,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[105,logseq____"^;logseq____",logseq____"~u6525b93c-da1b-4bb1-962b-cfabc10c341flogseq____",536870920]],[logseq____"^15logseq____",[106,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 2]]logseq____",536870920]],[logseq____"^15logseq____",[106,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[106,logseq____"^Flogseq____",105,536870920]],[logseq____"^15logseq____",[106,logseq____"^Xlogseq____",103,536870920]],[logseq____"^15logseq____",[106,logseq____"^Vlogseq____",103,536870920]],[logseq____"^15logseq____",[106,logseq____"^Ulogseq____",97,536870920]],[logseq____"^15logseq____",[106,logseq____"^Ulogseq____",103,536870920]],[logseq____"^15logseq____",[106,logseq____"^Hlogseq____",97,536870920]],[logseq____"^15logseq____",[106,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[106,logseq____"^;logseq____",logseq____"~u6525b93c-729f-492f-86e1-f0d5ce69ad0alogseq____",536870920]],[logseq____"^15logseq____",[107,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 3]]logseq____",536870920]],[logseq____"^15logseq____",[107,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[107,logseq____"^Flogseq____",106,536870920]],[logseq____"^15logseq____",[107,logseq____"^Xlogseq____",103,536870920]],[logseq____"^15logseq____",[107,logseq____"^Vlogseq____",103,536870920]],[logseq____"^15logseq____",[107,logseq____"^Ulogseq____",103,536870920]],[logseq____"^15logseq____",[107,logseq____"^Ulogseq____",104,536870920]],[logseq____"^15logseq____",[107,logseq____"^Hlogseq____",104,536870920]],[logseq____"^15logseq____",[107,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[107,logseq____"^;logseq____",logseq____"~u6525b93c-633d-4a51-a4bc-6a473abd28dblogseq____",536870920]],[logseq____"^15logseq____",[109,logseq____"^Klogseq____",1696971068374,536870921]],[logseq____"^15logseq____",[109,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[109,logseq____"^Ylogseq____",logseq____"wahrheitswerteverlauflogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^11logseq____",logseq____"Wahrheitswerteverlauflogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^Blogseq____",1696971068374,536870921]],[logseq____"^15logseq____",[109,logseq____"^;logseq____",logseq____"~u6525b93c-1c62-48ab-9904-e9b3a6ed73b2logseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^Klogseq____",1696971068367,536870921]],[logseq____"^15logseq____",[110,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[110,logseq____"^Ylogseq____",logseq____"aussagenlogische variablelogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^11logseq____",logseq____"Aussagenlogische variablelogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^Blogseq____",1696971068367,536870921]],[logseq____"^15logseq____",[110,logseq____"^;logseq____",logseq____"~u6525b93c-b350-46e7-8214-565695a6b1f4logseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^Klogseq____",1696971068360,536870921]],[logseq____"^15logseq____",[111,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[111,logseq____"^Ylogseq____",logseq____"wikipedialogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^11logseq____",logseq____"Wikipedialogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^Blogseq____",1696971068360,536870921]],[logseq____"^15logseq____",[111,logseq____"^;logseq____",logseq____"~u6525b93c-d5a8-4383-80b1-5c4461862617logseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^Klogseq____",1696971068371,536870921]],[logseq____"^15logseq____",[112,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[112,logseq____"^Ylogseq____",logseq____"formellogseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^11logseq____",logseq____"Formellogseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^Blogseq____",1696971068371,536870921]],[logseq____"^15logseq____",[112,logseq____"^;logseq____",logseq____"~u6525b93c-ef98-40ef-a2b8-76de4d11baf3logseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^Klogseq____",1696971068372,536870921]],[logseq____"^15logseq____",[113,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[113,logseq____"^Ylogseq____",logseq____"wahrheitswertlogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^11logseq____",logseq____"Wahrheitswertlogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^Blogseq____",1696971068372,536870921]],[logseq____"^15logseq____",[113,logseq____"^;logseq____",logseq____"~u6525b93c-77e8-4fdb-9551-5e7da12464fflogseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^Klogseq____",1696971068359,536870921]],[logseq____"^15logseq____",[114,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[114,logseq____"^Ylogseq____",logseq____"\\logseq____"mathematische grundlagen der informatik\\logseq____", 5. auflage 2011logseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^11logseq____",logseq____"\\logseq____"Mathematische Grundlagen der Informatik\\logseq____", 5. Auflage 2011logseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^Blogseq____",1696971068359,536870921]],[logseq____"^15logseq____",[114,logseq____"^;logseq____",logseq____"~u6525b93c-8d4a-4c7d-a8ed-9af970a51b56logseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^Klogseq____",1696971068375,536870921]],[logseq____"^15logseq____",[115,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[115,logseq____"^Ylogseq____",logseq____"tantologielogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^11logseq____",logseq____"Tantologielogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^Blogseq____",1696971068375,536870921]],[logseq____"^15logseq____",[115,logseq____"^;logseq____",logseq____"~u6525b93c-7188-489f-aa4e-bdf464004083logseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^Klogseq____",1696971068373,536870921]],[logseq____"^15logseq____",[116,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[116,logseq____"^Ylogseq____",logseq____"kontradiktionlogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^11logseq____",logseq____"Kontradiktionlogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^Blogseq____",1696971068373,536870921]],[logseq____"^15logseq____",[116,logseq____"^;logseq____",logseq____"~u6525b93c-2dff-46a1-bdc4-381e0d5328f8logseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^Klogseq____",1696971068365,536870921]],[logseq____"^15logseq____",[117,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[117,logseq____"^Ylogseq____",logseq____"semantiklogseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^11logseq____",logseq____"Semantiklogseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^Blogseq____",1696971068365,536870921]],[logseq____"^15logseq____",[117,logseq____"^;logseq____",logseq____"~u6525b93c-7ca7-4e4d-8b4f-5835a15873e2logseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^Klogseq____",1696971068375,536870921]],[logseq____"^15logseq____",[118,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[118,logseq____"^Ylogseq____",logseq____"logisch äquivalentlogseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^11logseq____",logseq____"logisch äquivalentlogseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^Blogseq____",1696971068375,536870921]],[logseq____"^15logseq____",[118,logseq____"^;logseq____",logseq____"~u6525b93c-fba6-4b03-91ce-c6503e6f4a9flogseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Klogseq____",1696971068370,536870921]],[logseq____"^15logseq____",[119,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[119,logseq____"^Ylogseq____",logseq____"variablelogseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^11logseq____",logseq____"Variablelogseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Blogseq____",1696971068370,536870921]],[logseq____"^15logseq____",[119,logseq____"^;logseq____",logseq____"~u6525b93c-7154-429b-8353-19e39f068e59logseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Klogseq____",1696971068371,536870921]],[logseq____"^15logseq____",[120,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ylogseq____",logseq____"tabellenregelnlogseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^11logseq____",logseq____"Tabellenregelnlogseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Blogseq____",1696971068371,536870921]],[logseq____"^15logseq____",[120,logseq____"^;logseq____",logseq____"~u6525b93c-5fed-4791-8b4c-bddecc1726a7logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Klogseq____",1696971068363,536870921]],[logseq____"^15logseq____",[121,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ylogseq____",logseq____"aussagenlogseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^11logseq____",logseq____"Aussagenlogseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Blogseq____",1696971068363,536870921]],[logseq____"^15logseq____",[121,logseq____"^;logseq____",logseq____"~u6525b93c-98d0-4b12-8b6e-f1c4c5d98b0alogseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Klogseq____",1696971068369,536870921]],[logseq____"^15logseq____",[122,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ylogseq____",logseq____"verknüpfungenlogseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^11logseq____",logseq____"Verknüpfungenlogseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Blogseq____",1696971068369,536870921]],[logseq____"^15logseq____",[122,logseq____"^;logseq____",logseq____"~u6525b93c-a791-4771-abb7-80ff0b5bb6eblogseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Klogseq____",1696971068370,536870921]],[logseq____"^15logseq____",[123,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ylogseq____",logseq____"aussageformellogseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^11logseq____",logseq____"Aussageformellogseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Blogseq____",1696971068370,536870921]],[logseq____"^15logseq____",[123,logseq____"^;logseq____",logseq____"~u6525b93c-e9d4-4435-916a-80d73a396d84logseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Klogseq____",1696971068366,536870921]],[logseq____"^15logseq____",[124,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ylogseq____",logseq____"syntaxlogseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^11logseq____",logseq____"Syntaxlogseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Blogseq____",1696971068366,536870921]],[logseq____"^15logseq____",[124,logseq____"^;logseq____",logseq____"~u6525b93c-c268-4b0c-8f01-966b9bed067flogseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Klogseq____",1696971068362,536870921]],[logseq____"^15logseq____",[125,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[125,logseq____"^Ylogseq____",logseq____"verknüpfung von aussagenlogseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^11logseq____",logseq____"Verknüpfung von Aussagenlogseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Blogseq____",1696971068362,536870921]],[logseq____"^15logseq____",[125,logseq____"^;logseq____",logseq____"~u6525b93c-4e48-4bb9-a714-05bdda05a752logseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Klogseq____",1696971068374,536870921]],[logseq____"^15logseq____",[126,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[126,logseq____"^Ylogseq____",logseq____"schreibweiselogseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^11logseq____",logseq____"Schreibweiselogseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Blogseq____",1696971068374,536870921]],[logseq____"^15logseq____",[126,logseq____"^;logseq____",logseq____"~u6525b93c-3db9-4559-8216-0c6013a969aflogseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Klogseq____",1696971068372,536870921]],[logseq____"^15logseq____",[127,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[127,logseq____"^Ylogseq____",logseq____"belegunglogseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^11logseq____",logseq____"Belegunglogseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Blogseq____",1696971068372,536870921]],[logseq____"^15logseq____",[127,logseq____"^;logseq____",logseq____"~u6525b93c-870f-4645-aa73-4747aab19c58logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Klogseq____",1696971068358,536870921]],[logseq____"^15logseq____",[128,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ylogseq____",logseq____"grundlagen und diskrete strukturen 1logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^11logseq____",logseq____"Grundlagen und Diskrete Strukturen 1logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Blogseq____",1696971068358,536870921]],[logseq____"^15logseq____",[128,logseq____"^;logseq____",logseq____"~u6525b93c-9e3b-4502-8291-756b595ab7a3logseq____",536870922]],[logseq____"^15logseq____",[129,logseq____"^Qlogseq____",logseq____"Formel, die konstant $f$ istlogseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Flogseq____",131,536870921]],[logseq____"^15logseq____",[129,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[129,logseq____"^Vlogseq____",131,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[129,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[129,logseq____"^;logseq____",logseq____"~u6525b93c-54be-4cb0-a8d6-f8a7ccf6e6b2logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Qlogseq____",logseq____"# 1. [[Aussagen]]logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Flogseq____",139,536870921]],[logseq____"^15logseq____",[130,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[130,logseq____"^Vlogseq____",128,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[130,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870921]],[logseq____"^15logseq____",[130,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[130,logseq____"^Hlogseq____",121,536870921]],[logseq____"^15logseq____",[130,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[130,logseq____"^;logseq____",logseq____"~u6525b93c-731a-45cb-84ce-ae7b550913c0logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Qlogseq____",logseq____"### [[Kontradiktion]]logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Flogseq____",144,536870921]],[logseq____"^15logseq____",[131,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[131,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[131,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",3],536870921]],[logseq____"^15logseq____",[131,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[131,logseq____"^Hlogseq____",116,536870921]],[logseq____"^15logseq____",[131,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[131,logseq____"^;logseq____",logseq____"~u6525b93c-5b5b-4a21-8e71-70aff7ec80a6logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Qlogseq____",logseq____"Formeln $p,q$ [[logisch äquivalent]], wenn sie den gleichen [[Wahrheitswerteverlauf]] haben.\\n[[Schreibweise]]: $p\\\\equiv q$logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Flogseq____",131,536870921]],[logseq____"^15logseq____",[132,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[132,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",118,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",126,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",109,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",118,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",126,536870921]],[logseq____"^15logseq____",[132,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[132,logseq____"^;logseq____",logseq____"~u6525b93c-d4b9-49e2-8c89-b90f04cb486elogseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Qlogseq____",logseq____"Sind $p$ und $q$ [[Aussagen]], so auch\\n\\\\begin{align}\\n(p\\\\land q) logseq____&\\\\quadlogseq____& (\\logseq____"\\\\text{und}\\logseq____")\\\\\\\\\\n(p\\\\lor q) logseq____&logseq____& (\\logseq____"\\\\text{oder}\\logseq____")\\\\\\\\\\n(\\\\neg p) logseq____&logseq____& (\\logseq____"\\\\text{nicht}\\logseq____")\\\\\\\\\\n(p\\\\rightarrow q) logseq____&logseq____& (\\logseq____"\\\\text{impliziert}\\logseq____")\\\\\\\\\\n(p\\\\leftrightarrow q) logseq____&logseq____& (\\logseq____"\\\\text{genau dann wenn}\\logseq____")\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Flogseq____",146,536870921]],[logseq____"^15logseq____",[133,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[133,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[133,logseq____"^Hlogseq____",121,536870921]],[logseq____"^15logseq____",[133,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[133,logseq____"^;logseq____",logseq____"~u6525b93c-cd57-40ea-b98f-923eaac97594logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Qlogseq____",logseq____"### [[Wahrheitswerteverlauf]] einer [[Aussageformel]]logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Flogseq____",149,536870921]],[logseq____"^15logseq____",[134,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[134,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",123,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[134,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",3],536870921]],[logseq____"^15logseq____",[134,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",109,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",123,536870921]],[logseq____"^15logseq____",[134,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[134,logseq____"^;logseq____",logseq____"~u6525b93c-2ae6-4e23-a59e-f6c9e3a5d525logseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Qlogseq____",logseq____"C. Meinel, M. Mundhenk, [[\\logseq____"Mathematische Grundlagen der Informatik\\logseq____", 5. Auflage 2011]]logseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Flogseq____",139,536870921]],[logseq____"^15logseq____",[135,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[135,logseq____"^Vlogseq____",139,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[135,logseq____"^Hlogseq____",114,536870921]],[logseq____"^15logseq____",[135,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[135,logseq____"^;logseq____",logseq____"~u6525b93c-4b11-46fa-a1e6-3ecdd815aefblogseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Qlogseq____",logseq____"Alternativ: $p\\\\equiv q$, falls $p\\\\leftrightarrow q$ [[Tantologie]]logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Flogseq____",132,536870921]],[logseq____"^15logseq____",[136,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[136,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",115,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[136,logseq____"^Hlogseq____",115,536870921]],[logseq____"^15logseq____",[136,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[136,logseq____"^;logseq____",logseq____"~u6525b93c-7679-4b55-9623-bc8ee123f5dclogseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel: Bestimmung des }$[[Wahrheitswerteverlauf]]$\\\\text{ von }(p\\\\rightarrow q)\\\\land(q\\\\rightarrow p)$\\n|$p$|$q$||$p\\\\rightarrow q$|$q\\\\rightarrow p$|$(p\\\\rightarrow q)\\\\land(q\\\\rightarrow p)|$p\\\\leftrightarrow q$|\\n|-|-|-|-|-|-|\\n|f|f||w|w|w|w|\\n|f|w||w|f|f|f|\\n|w|f||f|w|f|f|\\n|w|w||w|w|w|w|logseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Flogseq____",142,536870921]],[logseq____"^15logseq____",[137,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[137,logseq____"^Vlogseq____",134,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",123,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[137,logseq____"^Hlogseq____",109,536870921]],[logseq____"^15logseq____",[137,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[137,logseq____"^;logseq____",logseq____"~u6525b93c-2b2f-4f9b-9e78-17c66fc1cc31logseq____",536870921]],[logseq____"^15logseq____",[138,logseq____"^Qlogseq____",logseq____"### [[Aussagenlogische variable]]logseq____",536870921]],[logseq____"^15logseq____",[138,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[138,logseq____"^Flogseq____",152,536870921]],[logseq____"^15logseq____",[138,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[138,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[138,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[138,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[138,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[138,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[138,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",3],536870921]],[logseq____"^15logseq____",[138,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[138,logseq____"^Hlogseq____",110,536870921]],[logseq____"^15logseq____",[138,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[138,logseq____"^;logseq____",logseq____"~u6525b93c-53eb-43d2-8b22-595b13522928logseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Qlogseq____",logseq____"# Büchertiplogseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Flogseq____",128,536870921]],[logseq____"^15logseq____",[139,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[139,logseq____"^Vlogseq____",128,536870921]],[logseq____"^15logseq____",[139,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[139,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870921]],[logseq____"^15logseq____",[139,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[139,logseq____"^17logseq____",false,536870921]],[logseq____"^15logseq____",[139,logseq____"^;logseq____",logseq____"~u6525b93c-1152-4ade-8ad2-5bbd22c698aflogseq____",536870921]],[logseq____"^15logseq____",[140,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\np\\\\land q\\\\lor r\\\\\\\\\\n(p\\\\land q)\\\\lor r\\\\\\\\\\np\\\\land (q\\\\lor r)\\\\\\\\\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[140,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[140,logseq____"^Flogseq____",133,536870921]],[logseq____"^15logseq____",[140,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[140,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[140,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[140,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[140,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[140,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[140,logseq____"^;logseq____",logseq____"~u6525b93c-e491-4a8e-aa2c-84b39be4a9a8logseq____",536870921]],[logseq____"^15logseq____",[141,logseq____"^Qlogseq____",logseq____"[[Variable]], die den Wert $w$ oder $f$ annimmtlogseq____",536870921]],[logseq____"^15logseq____",[141,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[141,logseq____"^Flogseq____",138,536870921]],[logseq____"^15logseq____",[141,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[141,logseq____"^Vlogseq____",138,536870921]],[logseq____"^15logseq____",[141,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[141,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[141,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[141,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[141,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[141,logseq____"^Hlogseq____",119,536870921]],[logseq____"^15logseq____",[141,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[141,logseq____"^;logseq____",logseq____"~u6525b93c-381e-4096-ad2d-74f3009c2af2logseq____",536870921]],[logseq____"^15logseq____",[142,logseq____"^Qlogseq____",logseq____"Jede mögliche [[Belegung]] wird ein [[Wahrheitswert]] der [[Formel]] zugeordnet (nach [[Tabellenregeln]])logseq____",536870921]],[logseq____"^15logseq____",[142,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[142,logseq____"^Flogseq____",134,536870921]],[logseq____"^15logseq____",[142,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[142,logseq____"^Vlogseq____",134,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",113,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",120,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",123,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",127,536870921]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[142,logseq____"^Hlogseq____",112,536870921]],[logseq____"^15logseq____",[142,logseq____"^Hlogseq____",113,536870921]],[logseq____"^15logseq____",[142,logseq____"^Hlogseq____",120,536870921]],[logseq____"^15logseq____",[142,logseq____"^Hlogseq____",127,536870921]],[logseq____"^15logseq____",[142,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[142,logseq____"^;logseq____",logseq____"~u6525b93c-81c7-446e-ba82-9eeb1298044flogseq____",536870921]],[logseq____"^15logseq____",[143,logseq____"^Qlogseq____",logseq____"### [[Aussageformel]]logseq____",536870921]],[logseq____"^15logseq____",[143,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[143,logseq____"^Flogseq____",138,536870921]],[logseq____"^15logseq____",[143,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[143,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[143,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[143,logseq____"^Ulogseq____",123,536870921]],[logseq____"^15logseq____",[143,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[143,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[143,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",3],536870921]],[logseq____"^15logseq____",[143,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[143,logseq____"^Hlogseq____",123,536870921]],[logseq____"^15logseq____",[143,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[143,logseq____"^;logseq____",logseq____"~u6525b93c-0e7d-4025-9020-4353de5f5beelogseq____",536870921]],[logseq____"^15logseq____",[144,logseq____"^Qlogseq____",logseq____"### [[Tantologie]]logseq____",536870921]],[logseq____"^15logseq____",[144,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[144,logseq____"^Flogseq____",134,536870921]],[logseq____"^15logseq____",[144,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[144,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[144,logseq____"^Ulogseq____",115,536870921]],[logseq____"^15logseq____",[144,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[144,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[144,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[144,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",3],536870921]],[logseq____"^15logseq____",[144,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[144,logseq____"^Hlogseq____",115,536870921]],[logseq____"^15logseq____",[144,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[144,logseq____"^;logseq____",logseq____"~u6525b93c-3759-40af-8342-c39ea22ab750logseq____",536870921]],[logseq____"^15logseq____",[145,logseq____"^Qlogseq____",logseq____"Zuordnung von $w/f$ an jede [[Variable]] einer [[Aussageformel]]logseq____",536870921]],[logseq____"^15logseq____",[145,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[145,logseq____"^Flogseq____",149,536870921]],[logseq____"^15logseq____",[145,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[145,logseq____"^Vlogseq____",149,536870921]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",123,536870921]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",127,536870921]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[145,logseq____"^Hlogseq____",119,536870921]],[logseq____"^15logseq____",[145,logseq____"^Hlogseq____",123,536870921]],[logseq____"^15logseq____",[145,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[145,logseq____"^;logseq____",logseq____"~u6525b93c-cd27-4326-a731-fb7e0ff42c6elogseq____",536870921]],[logseq____"^15logseq____",[146,logseq____"^Qlogseq____",logseq____"## [[Verknüpfung von Aussagen]]logseq____",536870921]],[logseq____"^15logseq____",[146,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[146,logseq____"^Flogseq____",151,536870921]],[logseq____"^15logseq____",[146,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[146,logseq____"^Vlogseq____",130,536870921]],[logseq____"^15logseq____",[146,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[146,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[146,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[146,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870921]],[logseq____"^15logseq____",[146,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[146,logseq____"^Hlogseq____",125,536870921]],[logseq____"^15logseq____",[146,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[146,logseq____"^;logseq____",logseq____"~u6525b93c-f5de-481d-8e70-a3c99a570f04logseq____",536870921]],[logseq____"^15logseq____",[147,logseq____"^Qlogseq____",logseq____"Satz, der wahr oder falsch ist, d.h. der [[Wahrheitswert]] $w$ bzw $f$ hat ($t/f$, $1/0$, $\\\\text{wahr}/\\\\text{falsch}$)logseq____",536870921]],[logseq____"^15logseq____",[147,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[147,logseq____"^Flogseq____",130,536870921]],[logseq____"^15logseq____",[147,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[147,logseq____"^Vlogseq____",130,536870921]],[logseq____"^15logseq____",[147,logseq____"^Ulogseq____",113,536870921]],[logseq____"^15logseq____",[147,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[147,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[147,logseq____"^Hlogseq____",113,536870921]],[logseq____"^15logseq____",[147,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[147,logseq____"^;logseq____",logseq____"~u6525b93c-febc-4e90-84a7-c6b3e005900alogseq____",536870921]],[logseq____"^15logseq____",[148,logseq____"^Qlogseq____",logseq____"Entsteht durch sukzessive [[Verknüpfungen]] wie oben an Variablen ergibt #FIXMElogseq____",536870921]],[logseq____"^15logseq____",[148,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[148,logseq____"^Flogseq____",143,536870921]],[logseq____"^15logseq____",[148,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[148,logseq____"^Vlogseq____",143,536870921]],[logseq____"^15logseq____",[148,logseq____"^Ulogseq____",38,536870921]],[logseq____"^15logseq____",[148,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[148,logseq____"^Ulogseq____",122,536870921]],[logseq____"^15logseq____",[148,logseq____"^Ulogseq____",123,536870921]],[logseq____"^15logseq____",[148,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[148,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[148,logseq____"^Hlogseq____",38,536870921]],[logseq____"^15logseq____",[148,logseq____"^Hlogseq____",122,536870921]],[logseq____"^15logseq____",[148,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[148,logseq____"^;logseq____",logseq____"~u6525b93c-2ccf-48e5-8e69-63e40c8d0552logseq____",536870921]],[logseq____"^15logseq____",[149,logseq____"^Qlogseq____",logseq____"### [[Belegung]] (der Variablen)logseq____",536870921]],[logseq____"^15logseq____",[149,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[149,logseq____"^Flogseq____",143,536870921]],[logseq____"^15logseq____",[149,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[149,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[149,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[149,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[149,logseq____"^Ulogseq____",127,536870921]],[logseq____"^15logseq____",[149,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[149,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",3],536870921]],[logseq____"^15logseq____",[149,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[149,logseq____"^Hlogseq____",127,536870921]],[logseq____"^15logseq____",[149,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[149,logseq____"^;logseq____",logseq____"~u6525b93c-739e-456e-baa3-137982d5de2dlogseq____",536870921]],[logseq____"^15logseq____",[150,logseq____"^Qlogseq____",logseq____"Formel, die konstant $w$ istlogseq____",536870921]],[logseq____"^15logseq____",[150,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[150,logseq____"^Flogseq____",144,536870921]],[logseq____"^15logseq____",[150,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[150,logseq____"^Vlogseq____",144,536870921]],[logseq____"^15logseq____",[150,logseq____"^Ulogseq____",115,536870921]],[logseq____"^15logseq____",[150,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[150,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[150,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[150,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[150,logseq____"^;logseq____",logseq____"~u6525b93c-af04-417b-a483-0a4670a65ee3logseq____",536870921]],[logseq____"^15logseq____",[151,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\nlogseq____&\\logseq____"5\\\\text{ ist prim}\\logseq____" logseq____&\\\\quadlogseq____& (w)\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"4\\\\text{ ist prim}\\logseq____" logseq____&logseq____& (f)\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Jede gerade Zahl }\\\\ge4\\\\notag\\\\\\\\\\nlogseq____&\\\\text{ ist Summe zweier Primzahlen}\\logseq____" logseq____&logseq____& (\\\\text{Aussage, }w\\\\text{ oder }f)\\\\notag\\\\\\\\\\nlogseq____&(\\\\text{Vermutung von Goldback 1742})\\\\text{, }logseq____&logseq____&\\\\text{richtig für gerade Zahlen bis }4*10^{18}\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Dieser Satz ist falsch}\\logseq____" logseq____&logseq____& (\\\\text{keine Aussage})\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Die Gleichung } x^2+y^2=z^2 \\\\notag\\\\\\\\\\nlogseq____&\\\\text{ hat eine Lösung }x,y,z\\\\notag\\\\\\\\\\nlogseq____&\\\\text{ aus positiven ganzen Zahlen}\\logseq____" logseq____&logseq____& (w\\\\text{, z.B. }x=3,y=4,z=5)\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Für }n\\\\ge3\\\\text{ hat die Gleichung }\\\\notag\\\\\\\\\\nlogseq____&x^n+y^n=z^n\\\\text{ eine Lösung}logseq____&logseq____& (f\\\\text{, wie von Fermat 1640 vermutet}\\\\notag\\\\\\\\\\nlogseq____&x,y,z \\\\text{aus positiven ganzen Zahlen}\\logseq____" logseq____&logseq____&\\\\text{und von Wiles 1994 bewiesen})\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Gott ist tot}\\logseq____" logseq____&logseq____& (\\\\text{Aussage? Wohl kaum?})\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Nietzsche ist tot}\\logseq____" logseq____&logseq____& (\\\\text{Aussage?}) \\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Die Länder einer Landkarte lassen sich}\\\\notag\\\\\\\\\\nlogseq____&\\\\text{so mit nur vier Farben färben,}\\\\notag\\\\\\\\\\nlogseq____&\\\\text{dass Länder mit einer gemeinsamen}\\\\notag\\\\\\\\\\nlogseq____&\\\\text{Grenzlienie verschieden gefärbt sind.}\\logseq____" logseq____&logseq____& (\\\\text{Aussagge; }w\\\\text{, sog 4-Farben-Satz})\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[151,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[151,logseq____"^Flogseq____",147,536870921]],[logseq____"^15logseq____",[151,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[151,logseq____"^Vlogseq____",130,536870921]],[logseq____"^15logseq____",[151,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[151,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[151,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[151,logseq____"^;logseq____",logseq____"~u6525b93c-b856-49f4-83a4-3380dcc40171logseq____",536870921]],[logseq____"^15logseq____",[152,logseq____"^Qlogseq____",logseq____"Soweit die \\logseq____"[[Syntax]]\\logseq____", jetzt die [[Semantik]]. Die [[Wahrheitswert]]e\\n ergeben sich aus den Wahrheitswerten von $p$,$q$ gemäß folgender Tabelle ([[Tabellenregeln]]).\\n|$p$|$q$||$p\\\\land q$|$p\\\\lor q$|$\\\\neg p$|$p\\\\rightarrow q$|$p\\\\leftrightarrow q$|\\n|---|----||-----------|---------|---------|-----------------|---------------------|\\n|f|f||f|f|w|w|w|\\n|f|w||f|w|w|w|f|\\n|w|f||f|w|f|f|f|\\n|w|w||w|w|f|w|w|logseq____",536870921]],[logseq____"^15logseq____",[152,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[152,logseq____"^Flogseq____",140,536870921]],[logseq____"^15logseq____",[152,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[152,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",113,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",120,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",124,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[152,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[152,logseq____"^Hlogseq____",113,536870921]],[logseq____"^15logseq____",[152,logseq____"^Hlogseq____",117,536870921]],[logseq____"^15logseq____",[152,logseq____"^Hlogseq____",120,536870921]],[logseq____"^15logseq____",[152,logseq____"^Hlogseq____",124,536870921]],[logseq____"^15logseq____",[152,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[152,logseq____"^;logseq____",logseq____"~u6525b93c-79ce-4dd1-b1c5-a15ebbcdbdf0logseq____",536870921]],[logseq____"^15logseq____",[153,logseq____"^Qlogseq____",logseq____"[[Wikipedia]]logseq____",536870921]],[logseq____"^15logseq____",[153,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[153,logseq____"^Flogseq____",135,536870921]],[logseq____"^15logseq____",[153,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[153,logseq____"^Vlogseq____",139,536870921]],[logseq____"^15logseq____",[153,logseq____"^Ulogseq____",111,536870921]],[logseq____"^15logseq____",[153,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[153,logseq____"^Hlogseq____",111,536870921]],[logseq____"^15logseq____",[153,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[153,logseq____"^;logseq____",logseq____"~u6525b93c-8324-44df-a234-b13160684067logseq____",536870921]],[logseq____"^15logseq____",[154,logseq____"^Qlogseq____",logseq____"$\\\\text{Weitere Beispiel}$\\n\\\\begin{align}\\n(p\\\\rightarrow q)logseq____&\\\\equiv((\\\\neg q)\\\\rightarrow(\\\\neg p))\\\\\\\\\\n(p\\\\land(p\\\\rightarrow q)) logseq____&\\\\rightarrow q logseq____&\\\\quad \\\\text{Tantologie}\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[154,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[154,logseq____"^Flogseq____",136,536870921]],[logseq____"^15logseq____",[154,logseq____"^Xlogseq____",128,536870921]],[logseq____"^15logseq____",[154,logseq____"^Vlogseq____",146,536870921]],[logseq____"^15logseq____",[154,logseq____"^Ulogseq____",121,536870921]],[logseq____"^15logseq____",[154,logseq____"^Ulogseq____",125,536870921]],[logseq____"^15logseq____",[154,logseq____"^Ulogseq____",128,536870921]],[logseq____"^15logseq____",[154,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[154,logseq____"^;logseq____",logseq____"~u6525b93c-e3a9-4a2f-a5c1-3640f1aa43a5logseq____",536870921]],[logseq____"^15logseq____",[156,logseq____"^Klogseq____",1696971068462,536870922]],[logseq____"^15logseq____",[156,logseq____"^@logseq____",false,536870922]],[logseq____"^15logseq____",[156,logseq____"^Ylogseq____",logseq____"grundlagen und diskrete strukturenlogseq____",536870922]],[logseq____"^15logseq____",[156,logseq____"^11logseq____",logseq____"Grundlagen und Diskrete Strukturenlogseq____",536870922]],[logseq____"^15logseq____",[156,logseq____"^Blogseq____",1696971068462,536870922]],[logseq____"^15logseq____",[156,logseq____"^;logseq____",logseq____"~u6525b93c-6afa-473a-a89b-b1b27202ca3clogseq____",536870927]],[logseq____"^15logseq____",[157,logseq____"^Qlogseq____",logseq____"[[Grundlagen und Diskrete Strukturen 1]]logseq____",536870922]],[logseq____"^15logseq____",[157,logseq____"^Ologseq____",logseq____"^16logseq____",536870922]],[logseq____"^15logseq____",[157,logseq____"^Flogseq____",156,536870922]],[logseq____"^15logseq____",[157,logseq____"^Xlogseq____",156,536870922]],[logseq____"^15logseq____",[157,logseq____"^Vlogseq____",156,536870922]],[logseq____"^15logseq____",[157,logseq____"^Ulogseq____",128,536870922]],[logseq____"^15logseq____",[157,logseq____"^Ulogseq____",156,536870922]],[logseq____"^15logseq____",[157,logseq____"^Hlogseq____",128,536870922]],[logseq____"^15logseq____",[157,logseq____"^17logseq____",true,536870922]],[logseq____"^15logseq____",[157,logseq____"^;logseq____",logseq____"~u6525b93c-2ee2-471f-85f5-86097f07b4aalogseq____",536870922]],[logseq____"^15logseq____",[159,logseq____"^Klogseq____",1696971068468,536870923]],[logseq____"^15logseq____",[159,logseq____"^@logseq____",false,536870923]],[logseq____"^15logseq____",[159,logseq____"^Ylogseq____",logseq____"logarithmusgesetzelogseq____",536870923]],[logseq____"^15logseq____",[159,logseq____"^11logseq____",logseq____"Logarithmusgesetzelogseq____",536870923]],[logseq____"^15logseq____",[159,logseq____"^Blogseq____",1696971068468,536870923]],[logseq____"^15logseq____",[159,logseq____"^;logseq____",logseq____"~u6525b93c-7b20-4459-8759-ef8ac712dd83logseq____",536870923]],[logseq____"^15logseq____",[160,logseq____"^Qlogseq____",logseq____"[[Logarithmusgesetze]]logseq____",536870923]],[logseq____"^15logseq____",[160,logseq____"^Ologseq____",logseq____"^16logseq____",536870923]],[logseq____"^15logseq____",[160,logseq____"^Flogseq____",28,536870923]],[logseq____"^15logseq____",[160,logseq____"^Xlogseq____",28,536870923]],[logseq____"^15logseq____",[160,logseq____"^Vlogseq____",28,536870923]],[logseq____"^15logseq____",[160,logseq____"^Ulogseq____",28,536870923]],[logseq____"^15logseq____",[160,logseq____"^Ulogseq____",159,536870923]],[logseq____"^15logseq____",[160,logseq____"^Hlogseq____",159,536870923]],[logseq____"^15logseq____",[160,logseq____"^17logseq____",true,536870923]],[logseq____"^15logseq____",[160,logseq____"^;logseq____",logseq____"~u6525b93c-a099-4045-ab66-e915242fddd5logseq____",536870923]],[logseq____"^15logseq____",[161,logseq____"^Qlogseq____",logseq____"logseq____",536870923]],[logseq____"^15logseq____",[161,logseq____"^Ologseq____",logseq____"^16logseq____",536870923]],[logseq____"^15logseq____",[161,logseq____"^Flogseq____",160,536870923]],[logseq____"^15logseq____",[161,logseq____"^Xlogseq____",28,536870923]],[logseq____"^15logseq____",[161,logseq____"^Vlogseq____",28,536870923]],[logseq____"^15logseq____",[161,logseq____"^Ulogseq____",28,536870923]],[logseq____"^15logseq____",[161,logseq____"^17logseq____",true,536870923]],[logseq____"^15logseq____",[161,logseq____"^;logseq____",logseq____"~u6525b93c-4c9f-4a4b-badb-8b642bac33e2logseq____",536870923]],[logseq____"^15logseq____",[174,logseq____"^Klogseq____",1696971068528,536870926]],[logseq____"^15logseq____",[174,logseq____"^@logseq____",false,536870926]],[logseq____"^15logseq____",[174,logseq____"^Ylogseq____",logseq____"programmierung und algorithmenlogseq____",536870926]],[logseq____"^15logseq____",[174,logseq____"^11logseq____",logseq____"Programmierung und Algorithmenlogseq____",536870926]],[logseq____"^15logseq____",[174,logseq____"^Blogseq____",1696971068528,536870926]],[logseq____"^15logseq____",[174,logseq____"^;logseq____",logseq____"~u6525b93c-fa5d-4c1f-ae34-9fbf75d0b4aalogseq____",536870927]],[logseq____"^15logseq____",[175,logseq____"^Klogseq____",1696971068528,536870926]],[logseq____"^15logseq____",[175,logseq____"^@logseq____",false,536870926]],[logseq____"^15logseq____",[175,logseq____"^Ylogseq____",logseq____"programmierung und algorithmen 1logseq____",536870926]],[logseq____"^15logseq____",[175,logseq____"^11logseq____",logseq____"Programmierung und Algorithmen 1logseq____",536870926]],[logseq____"^15logseq____",[175,logseq____"^Blogseq____",1696971068528,536870926]],[logseq____"^15logseq____",[175,logseq____"^;logseq____",logseq____"~u6525b93c-aede-47d8-81b5-c1e395fe87d1logseq____",536870926]],[logseq____"^15logseq____",[176,logseq____"^Qlogseq____",logseq____"[[Programmierung und Algorithmen 1]]logseq____",536870926]],[logseq____"^15logseq____",[176,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[176,logseq____"^Flogseq____",174,536870926]],[logseq____"^15logseq____",[176,logseq____"^Xlogseq____",174,536870926]],[logseq____"^15logseq____",[176,logseq____"^Vlogseq____",174,536870926]],[logseq____"^15logseq____",[176,logseq____"^Ulogseq____",174,536870926]],[logseq____"^15logseq____",[176,logseq____"^Ulogseq____",175,536870926]],[logseq____"^15logseq____",[176,logseq____"^Hlogseq____",175,536870926]],[logseq____"^15logseq____",[176,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[176,logseq____"^;logseq____",logseq____"~u6525b93c-81a5-4b8c-9ebf-9ec48dca0288logseq____",536870926]],[logseq____"^15logseq____",[177,logseq____"^Qlogseq____",logseq____"# Informationenlogseq____",536870926]],[logseq____"^15logseq____",[177,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[177,logseq____"^Flogseq____",176,536870926]],[logseq____"^15logseq____",[177,logseq____"^Xlogseq____",174,536870926]],[logseq____"^15logseq____",[177,logseq____"^Vlogseq____",174,536870926]],[logseq____"^15logseq____",[177,logseq____"^Ulogseq____",174,536870926]],[logseq____"^15logseq____",[177,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870926]],[logseq____"^15logseq____",[177,logseq____"^Jlogseq____",[],536870926]],[logseq____"^15logseq____",[177,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[177,logseq____"^;logseq____",logseq____"~u6525b93c-fe7a-447d-a4ca-efc2cbdb91e2logseq____",536870926]],[logseq____"^15logseq____",[178,logseq____"^Qlogseq____",logseq____"Bestehquote: 40%logseq____",536870926]],[logseq____"^15logseq____",[178,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[178,logseq____"^Flogseq____",177,536870926]],[logseq____"^15logseq____",[178,logseq____"^Xlogseq____",174,536870926]],[logseq____"^15logseq____",[178,logseq____"^Vlogseq____",177,536870926]],[logseq____"^15logseq____",[178,logseq____"^Ulogseq____",174,536870926]],[logseq____"^15logseq____",[178,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[178,logseq____"^;logseq____",logseq____"~u6525b93c-8363-48b5-8dd3-62dda541e6a9logseq____",536870926]],[logseq____"^15logseq____",[179,logseq____"^Qlogseq____",logseq____"## Bonuspunktelogseq____",536870926]],[logseq____"^15logseq____",[179,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[179,logseq____"^Flogseq____",178,536870926]],[logseq____"^15logseq____",[179,logseq____"^Xlogseq____",174,536870926]],[logseq____"^15logseq____",[179,logseq____"^Vlogseq____",177,536870926]],[logseq____"^15logseq____",[179,logseq____"^Ulogseq____",174,536870926]],[logseq____"^15logseq____",[179,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870926]],[logseq____"^15logseq____",[179,logseq____"^Jlogseq____",[],536870926]],[logseq____"^15logseq____",[179,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[179,logseq____"^;logseq____",logseq____"~u6525b93c-7a9a-40b9-ba1c-5b38b746a891logseq____",536870926]],[logseq____"^15logseq____",[180,logseq____"^Qlogseq____",logseq____"Übungsblätter abgebenlogseq____",536870926]],[logseq____"^15logseq____",[180,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[180,logseq____"^Flogseq____",179,536870926]],[logseq____"^15logseq____",[180,logseq____"^Xlogseq____",174,536870926]],[logseq____"^15logseq____",[180,logseq____"^Vlogseq____",179,536870926]],[logseq____"^15logseq____",[180,logseq____"^Ulogseq____",174,536870926]],[logseq____"^15logseq____",[180,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[180,logseq____"^;logseq____",logseq____"~u6525b93c-8574-4267-8d64-dd863b70ee85logseq____",536870926]],[logseq____"^15logseq____",[181,logseq____"^Qlogseq____",logseq____"Übungsprüfungenlogseq____",536870926]],[logseq____"^15logseq____",[181,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[181,logseq____"^Flogseq____",180,536870926]],[logseq____"^15logseq____",[181,logseq____"^Xlogseq____",174,536870926]],[logseq____"^15logseq____",[181,logseq____"^Vlogseq____",179,536870926]],[logseq____"^15logseq____",[181,logseq____"^Ulogseq____",174,536870926]],[logseq____"^15logseq____",[181,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[181,logseq____"^;logseq____",logseq____"~u6525b93c-d695-4416-ac0f-6b94029266eblogseq____",536870926]],[logseq____"^15logseq____",[183,logseq____"^Klogseq____",1696971068540,536870927]],[logseq____"^15logseq____",[183,logseq____"^@logseq____",false,536870927]],[logseq____"^15logseq____",[183,logseq____"^Ylogseq____",logseq____"vorlesungs notizenlogseq____",536870927]],[logseq____"^15logseq____",[183,logseq____"^11logseq____",logseq____"Vorlesungs Notizenlogseq____",536870927]],[logseq____"^15logseq____",[183,logseq____"^Blogseq____",1696971068540,536870927]],[logseq____"^15logseq____",[183,logseq____"^;logseq____",logseq____"~u6525b93c-00de-4508-ab06-7ea6e63d1020logseq____",536870927]],[logseq____"^15logseq____",[184,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe]]logseq____",536870927]],[logseq____"^15logseq____",[184,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[184,logseq____"^Flogseq____",183,536870927]],[logseq____"^15logseq____",[184,logseq____"^Xlogseq____",183,536870927]],[logseq____"^15logseq____",[184,logseq____"^Vlogseq____",183,536870927]],[logseq____"^15logseq____",[184,logseq____"^Ulogseq____",103,536870927]],[logseq____"^15logseq____",[184,logseq____"^Ulogseq____",183,536870927]],[logseq____"^15logseq____",[184,logseq____"^Hlogseq____",103,536870927]],[logseq____"^15logseq____",[184,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[184,logseq____"^;logseq____",logseq____"~u6525b93c-7a79-4c81-881c-c9b4a2cefe7elogseq____",536870927]],[logseq____"^15logseq____",[185,logseq____"^Qlogseq____",logseq____"[[Mathe 1]]logseq____",536870927]],[logseq____"^15logseq____",[185,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[185,logseq____"^Flogseq____",184,536870927]],[logseq____"^15logseq____",[185,logseq____"^Xlogseq____",183,536870927]],[logseq____"^15logseq____",[185,logseq____"^Vlogseq____",183,536870927]],[logseq____"^15logseq____",[185,logseq____"^Ulogseq____",163,536870927]],[logseq____"^15logseq____",[185,logseq____"^Ulogseq____",183,536870927]],[logseq____"^15logseq____",[185,logseq____"^Hlogseq____",163,536870927]],[logseq____"^15logseq____",[185,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[185,logseq____"^;logseq____",logseq____"~u6525b93c-01f3-469b-afd7-062468601171logseq____",536870927]],[logseq____"^15logseq____",[186,logseq____"^Qlogseq____",logseq____"[[Grundlagen und Diskrete Strukturen]]logseq____",536870927]],[logseq____"^15logseq____",[186,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[186,logseq____"^Flogseq____",185,536870927]],[logseq____"^15logseq____",[186,logseq____"^Xlogseq____",183,536870927]],[logseq____"^15logseq____",[186,logseq____"^Vlogseq____",183,536870927]],[logseq____"^15logseq____",[186,logseq____"^Ulogseq____",156,536870927]],[logseq____"^15logseq____",[186,logseq____"^Ulogseq____",183,536870927]],[logseq____"^15logseq____",[186,logseq____"^Hlogseq____",156,536870927]],[logseq____"^15logseq____",[186,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[186,logseq____"^;logseq____",logseq____"~u6525b93c-0f12-4978-8316-d8dc4a14bd29logseq____",536870927]],[logseq____"^15logseq____",[187,logseq____"^Qlogseq____",logseq____"[[Programmierung und Algorithmen]]logseq____",536870927]],[logseq____"^15logseq____",[187,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[187,logseq____"^Flogseq____",186,536870927]],[logseq____"^15logseq____",[187,logseq____"^Xlogseq____",183,536870927]],[logseq____"^15logseq____",[187,logseq____"^Vlogseq____",183,536870927]],[logseq____"^15logseq____",[187,logseq____"^Ulogseq____",174,536870927]],[logseq____"^15logseq____",[187,logseq____"^Ulogseq____",183,536870927]],[logseq____"^15logseq____",[187,logseq____"^Hlogseq____",174,536870927]],[logseq____"^15logseq____",[187,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[187,logseq____"^;logseq____",logseq____"~u6525b93c-4396-45da-9fc1-a25e81c969d6logseq____",536870927]]]]]]"</script>
|
|
<script>window.logseq_state="{:ui/theme \"dark\", :config {\"local\" {:shortcuts {}, :default-templates {:journals \"\"}, :feature/enable-journals? false, :query/views {:pprint (fn [r] [:pre.code (pprint r)])}, :editor/preferred-pasting-file? true, :macros {}, :shortcut/doc-mode-enter-for-new-block? false, :favorites [], :ui/show-empty-bullets? false, :file/name-format :triple-lowbar, :preferred-workflow :now, :publishing/all-pages-public? true, :ref/default-open-blocks-level 2, :feature/enable-block-timestamps? false, :start-of-week 6, :ref/linked-references-collapsed-threshold 50, :outliner/block-title-collapse-enabled? false, :commands [], :ui/show-full-blocks? false, :meta/version 1, :hidden [], :default-queries {:journals [{:title \"🔨 NOW\", :query [:find (pull ?h [*]) :in $ ?start ?today :where [?h :block/marker ?marker] [(contains? #{\"NOW\" \"DOING\"} ?marker)] [?h :block/page ?p] [?p :block/journal? true] [?p :block/journal-day ?d] [(>= ?d ?start)] [(<= ?d ?today)]], :inputs [:14d :today], :result-transform (fn [result] (sort-by (fn [h] (get h :block/priority \"Z\")) result)), :group-by-page? false, :collapsed? false} {:title \"📅 NEXT\", :query [:find (pull ?h [*]) :in $ ?start ?next :where [?h :block/marker ?marker] [(contains? #{\"NOW\" \"LATER\" \"TODO\"} ?marker)] [?h :block/page ?p] [?p :block/journal? true] [?p :block/journal-day ?d] [(> ?d ?start)] [(< ?d ?next)]], :inputs [:today :7d-after], :group-by-page? false, :collapsed? false}]}, :ui/auto-expand-block-refs? true, :ui/enable-tooltip? true, :query/result-transforms {:sort-by-priority (fn [result] (sort-by (fn [h] (get h :block/priority \"Z\")) result))}, :property-pages/enabled? true, :block/content-max-length 10000, :ui/show-command-doc? true, :feature/enable-search-remove-accents? true, :default-home {:page \"Vorlesungs Notizen\"}}}}"</script>
|
|
<script type="text/javascript">// Single Page Apps for GitHub Pages
|
|
// https://github.com/rafgraph/spa-github-pages
|
|
// Copyright (c) 2016 Rafael Pedicini, licensed under the MIT License
|
|
// ----------------------------------------------------------------------
|
|
// This script checks to see if a redirect is present in the query string
|
|
// and converts it back into the correct url and adds it to the
|
|
// browser's history using window.history.replaceState(...),
|
|
// which won't cause the browser to attempt to load the new url.
|
|
// When the single page app is loaded further down in this file,
|
|
// the correct url will be waiting in the browser's history for
|
|
// the single page app to route accordingly.
|
|
(function(l) {
|
|
if (l.search) {
|
|
var q = {};
|
|
l.search.slice(1).split('&').forEach(function(v) {
|
|
var a = v.split('=');
|
|
q[a[0]] = a.slice(1).join('=').replace(/~and~/g, '&');
|
|
});
|
|
if (q.p !== undefined) {
|
|
window.history.replaceState(null, null,
|
|
l.pathname.slice(0, -1) + (q.p || '') +
|
|
(q.q ? ('?' + q.q) : '') +
|
|
l.hash
|
|
);
|
|
}
|
|
}
|
|
}(window.location))</script>
|
|
<script src="static/js/main.js"></script>
|
|
<script src="static/js/interact.min.js"></script>
|
|
<script src="static/js/highlight.min.js"></script>
|
|
<script src="static/js/katex.min.js"></script>
|
|
<script src="static/js/html2canvas.min.js"></script>
|
|
<script src="static/js/code-editor.js"></script>
|
|
<script src="static/js/custom.js"></script>
|
|
</body>
|