62 lines
167 KiB
HTML
62 lines
167 KiB
HTML
<!DOCTYPE html>
|
|
<head><meta charset="utf-8"></meta>
|
|
<meta content="minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no" name="viewport"></meta>
|
|
<link type="text/css" href="static/css/tabler-icons.min.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/style.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/custom.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/export.css" rel="stylesheet"></link>
|
|
<link href="static/img/logo.png" type="image/png" rel="shortcut icon"></link>
|
|
<link href="static/img/logo.png" sizes="192x192" rel="shortcut icon"></link>
|
|
<link href="static/img/logo.png" rel="apple-touch-icon"></link>
|
|
<meta name="apple-mobile-web-app-title"></meta>
|
|
<meta name="apple-mobile-web-app-capable" content="yes"></meta>
|
|
<meta name="apple-touch-fullscreen" content="yes"></meta>
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"></meta>
|
|
<meta name="mobile-web-app-capable" content="yes"></meta>
|
|
<meta property="og:title"></meta>
|
|
<meta content="site" property="og:type"></meta>
|
|
<meta content="static/img/logo.png" property="og:image"></meta>
|
|
<meta property="og:description"></meta>
|
|
<title></title>
|
|
<meta property="og:site_name"></meta>
|
|
<meta></meta>
|
|
</head>
|
|
<body><div id="root"></div>
|
|
<script>window.logseq_db="[logseq____"~#datascript/DBlogseq____",[logseq____"^ logseq____",logseq____"~:schemalogseq____",[logseq____"^ logseq____",logseq____"~:ast/versionlogseq____",[logseq____"^ logseq____"],logseq____"~:file/contentlogseq____",[logseq____"^ logseq____"],logseq____"~:block/properties-text-valueslogseq____",[logseq____"^ logseq____"],logseq____"~:block/aliaslogseq____",[logseq____"^ logseq____",logseq____"~:db/valueTypelogseq____",logseq____"~:db.type/reflogseq____",logseq____"~:db/cardinalitylogseq____",logseq____"~:db.cardinality/manylogseq____"],logseq____"~:block/pre-block?logseq____",[logseq____"^ logseq____"],logseq____"~:block/uuidlogseq____",[logseq____"^ logseq____",logseq____"~:db/uniquelogseq____",logseq____"~:db.unique/identitylogseq____"],logseq____"~:block/prioritylogseq____",[logseq____"^ logseq____"],logseq____"~:block/propertieslogseq____",[logseq____"^ logseq____"],logseq____"~:block/journal?logseq____",[logseq____"^ logseq____"],logseq____"~:block/namespacelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____"],logseq____"~:block/updated-atlogseq____",[logseq____"^ logseq____"],logseq____"~:block/repeated?logseq____",[logseq____"^ logseq____"],logseq____"~:db/typelogseq____",[logseq____"^ logseq____"],logseq____"~:file/handlelogseq____",[logseq____"^ logseq____"],logseq____"~:block/leftlogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"~:db/indexlogseq____",true],logseq____"~:block/refslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/scheduledlogseq____",[logseq____"^ logseq____"],logseq____"~:block/properties-orderlogseq____",[logseq____"^ logseq____"],logseq____"~:block/created-atlogseq____",[logseq____"^ logseq____"],logseq____"~:block/deadlinelogseq____",[logseq____"^ logseq____"],logseq____"~:block/collapsed?logseq____",[logseq____"^ logseq____",logseq____"^Glogseq____",true],logseq____"~:block/journal-daylogseq____",[logseq____"^ logseq____"],logseq____"~:block/formatlogseq____",[logseq____"^ logseq____"],logseq____"~:block/tagslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/contentlogseq____",[logseq____"^ logseq____"],logseq____"~:recent/pageslogseq____",[logseq____"^ logseq____"],logseq____"~:block/macroslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:db/identlogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:block/path-refslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/parentlogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^Glogseq____",true],logseq____"~:block/typelogseq____",[logseq____"^ logseq____"],logseq____"~:block/pagelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^Glogseq____",true],logseq____"~:block/namelogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:file/pathlogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:block/filelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____"],logseq____"~:block/markerlogseq____",[logseq____"^ logseq____"],logseq____"~:block/original-namelogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:schema/versionlogseq____",[logseq____"^ logseq____"]],logseq____"~:datomslogseq____",[logseq____"~#listlogseq____",[[logseq____"~#datascript/Datomlogseq____",[1,logseq____"^12logseq____",2,536870913]],[logseq____"^15logseq____",[2,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[2,logseq____"^Ylogseq____",logseq____"cardlogseq____",536870913]],[logseq____"^15logseq____",[2,logseq____"^11logseq____",logseq____"cardlogseq____",536870913]],[logseq____"^15logseq____",[2,logseq____"^;logseq____",logseq____"~u60a5a826-e327-4a66-8f31-98192460cdeflogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[3,logseq____"^Ylogseq____",logseq____"canceledlogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^11logseq____",logseq____"CANCELEDlogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^;logseq____",logseq____"~u68a43bb2-b06c-4d25-b033-bce3802e8fe0logseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[4,logseq____"^Ylogseq____",logseq____"todologseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^11logseq____",logseq____"TODOlogseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^;logseq____",logseq____"~u874ac25e-8e73-4287-b30d-fade936824fclogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[5,logseq____"^Ylogseq____",logseq____"nowlogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^11logseq____",logseq____"NOWlogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^;logseq____",logseq____"~ue1137514-6c8f-483d-a456-36e9f063d65dlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[6,logseq____"^Ylogseq____",logseq____"laterlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^11logseq____",logseq____"LATERlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^;logseq____",logseq____"~u0dea47f0-efc2-4d13-8c29-2dbe2beb21dflogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[7,logseq____"^Ylogseq____",logseq____"donelogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^11logseq____",logseq____"DONElogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^;logseq____",logseq____"~u2d2aa9c8-14e2-48e7-9c42-a0c92b492124logseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[8,logseq____"^Ylogseq____",logseq____"doinglogseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^11logseq____",logseq____"DOINGlogseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^;logseq____",logseq____"~u60c38148-d473-449c-99dc-cb173e667180logseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[9,logseq____"^Ylogseq____",logseq____"in-progresslogseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^11logseq____",logseq____"IN-PROGRESSlogseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^;logseq____",logseq____"~u4e433cd3-100b-4b6f-9aaf-e7a172cb9e39logseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[10,logseq____"^Ylogseq____",logseq____"clogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^11logseq____",logseq____"Clogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^;logseq____",logseq____"~ue010fcd1-3481-400a-8da6-71cac15babbelogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[11,logseq____"^Ylogseq____",logseq____"blogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^11logseq____",logseq____"Blogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^;logseq____",logseq____"~ufae4e892-0891-4b10-b966-b39d554199a6logseq____",536870914]],[logseq____"^15logseq____",[12,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[12,logseq____"^Ylogseq____",logseq____"contentslogseq____",536870914]],[logseq____"^15logseq____",[12,logseq____"^11logseq____",logseq____"contentslogseq____",536870917]],[logseq____"^15logseq____",[12,logseq____"^;logseq____",logseq____"~u6525a6f8-dfe1-452e-9733-0c96dcbc612blogseq____",536870917]],[logseq____"^15logseq____",[13,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[13,logseq____"^Ylogseq____",logseq____"waitinglogseq____",536870914]],[logseq____"^15logseq____",[13,logseq____"^11logseq____",logseq____"WAITINGlogseq____",536870914]],[logseq____"^15logseq____",[13,logseq____"^;logseq____",logseq____"~u74799856-77ce-4a47-b89e-1ea653fdb9d7logseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[14,logseq____"^Ylogseq____",logseq____"favoriteslogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^11logseq____",logseq____"Favoriteslogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^;logseq____",logseq____"~u513d873b-153f-4d3f-bdd5-5cb88ed9ffdclogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[15,logseq____"^Ylogseq____",logseq____"alogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^11logseq____",logseq____"Alogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^;logseq____",logseq____"~u16f4dc1e-cb85-4ccc-beda-2fb48ae2ca2dlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[16,logseq____"^Ylogseq____",logseq____"cancelledlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^11logseq____",logseq____"CANCELLEDlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^;logseq____",logseq____"~ua96ed29f-b082-4f41-89de-e9be0dd57378logseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[17,logseq____"^Ylogseq____",logseq____"waitlogseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^11logseq____",logseq____"WAITlogseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^;logseq____",logseq____"~uf28b6c5a-4b7e-42be-89d1-6a0b0c074d20logseq____",536870914]],[logseq____"^15logseq____",[21,logseq____"^Qlogseq____",logseq____"logseq____",536870917]],[logseq____"^15logseq____",[21,logseq____"^Ologseq____",logseq____"~:markdownlogseq____",536870917]],[logseq____"^15logseq____",[21,logseq____"^Flogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Xlogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Vlogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Ulogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"~:block/unorderedlogseq____",true,536870917]],[logseq____"^15logseq____",[21,logseq____"^;logseq____",logseq____"~u6525a6f8-da74-4847-a840-6426e957101elogseq____",536870917]],[logseq____"^15logseq____",[23,logseq____"^Klogseq____",1696966393018,536870918]],[logseq____"^15logseq____",[23,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[23,logseq____"^Ylogseq____",logseq____"quadratische ergänzunglogseq____",536870918]],[logseq____"^15logseq____",[23,logseq____"^11logseq____",logseq____"Quadratische Ergänzunglogseq____",536870918]],[logseq____"^15logseq____",[23,logseq____"^Blogseq____",1696966393018,536870918]],[logseq____"^15logseq____",[23,logseq____"^;logseq____",logseq____"~u6525a6f9-bd8a-4143-a6ce-23cc67851a52logseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^Klogseq____",1696966392990,536870918]],[logseq____"^15logseq____",[24,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[24,logseq____"^Ylogseq____",logseq____"potenzenlogseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^11logseq____",logseq____"Potenzenlogseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^Blogseq____",1696966392990,536870918]],[logseq____"^15logseq____",[24,logseq____"^;logseq____",logseq____"~u6525a6f9-8433-4d99-b110-f28066934f9clogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^Klogseq____",1696966392986,536870918]],[logseq____"^15logseq____",[25,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[25,logseq____"^Ylogseq____",logseq____"pascalsches dreiecklogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^11logseq____",logseq____"Pascalsches Dreiecklogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^Blogseq____",1696966392986,536870918]],[logseq____"^15logseq____",[25,logseq____"^;logseq____",logseq____"~u6525a6f9-da9b-4bed-9038-83c2e3683b71logseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^Klogseq____",1696966393008,536870918]],[logseq____"^15logseq____",[26,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[26,logseq____"^Ylogseq____",logseq____"quadratische gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^11logseq____",logseq____"Quadratische Gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^Blogseq____",1696966393008,536870918]],[logseq____"^15logseq____",[26,logseq____"^;logseq____",logseq____"~u6525a6f9-eeee-4455-9feb-c093a06d48d2logseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^Klogseq____",1696966392977,536870918]],[logseq____"^15logseq____",[27,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[27,logseq____"^Ylogseq____",logseq____"logarithmenlogseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^11logseq____",logseq____"Logarithmenlogseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^Blogseq____",1696966392977,536870918]],[logseq____"^15logseq____",[27,logseq____"^;logseq____",logseq____"~u6525a6f9-b2e7-4ab0-bb83-44e00c3cab1blogseq____",536870923]],[logseq____"^15logseq____",[28,logseq____"^Klogseq____",1696966392988,536870918]],[logseq____"^15logseq____",[28,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[28,logseq____"^Ylogseq____",logseq____"binomialkoeffizientlogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^11logseq____",logseq____"Binomialkoeffizientlogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^Blogseq____",1696966392988,536870918]],[logseq____"^15logseq____",[28,logseq____"^;logseq____",logseq____"~u6525a6f9-b518-4a3c-b9b6-668aece61414logseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^Klogseq____",1696966392976,536870918]],[logseq____"^15logseq____",[29,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[29,logseq____"^Ylogseq____",logseq____"gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^11logseq____",logseq____"Gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^Blogseq____",1696966392976,536870918]],[logseq____"^15logseq____",[29,logseq____"^;logseq____",logseq____"~u6525a6f9-c290-4a10-9e82-a0c3340f4a1blogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^Klogseq____",1696966392984,536870918]],[logseq____"^15logseq____",[30,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[30,logseq____"^Ylogseq____",logseq____"binomische formelnlogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^11logseq____",logseq____"Binomische Formelnlogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^Blogseq____",1696966392984,536870918]],[logseq____"^15logseq____",[30,logseq____"^;logseq____",logseq____"~u6525a6f9-6168-46b5-82ee-15bd60592752logseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^Klogseq____",1696966392981,536870918]],[logseq____"^15logseq____",[31,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[31,logseq____"^Ylogseq____",logseq____"trigonometrielogseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^11logseq____",logseq____"Trigonometrielogseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^Blogseq____",1696966392981,536870918]],[logseq____"^15logseq____",[31,logseq____"^;logseq____",logseq____"~u6525a6f9-3cb4-48bf-bdc8-4950979589eelogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^Klogseq____",1696966392991,536870918]],[logseq____"^15logseq____",[32,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[32,logseq____"^Ylogseq____",logseq____"wurzelnlogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^11logseq____",logseq____"Wurzelnlogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^Blogseq____",1696966392991,536870918]],[logseq____"^15logseq____",[32,logseq____"^;logseq____",logseq____"~u6525a6f9-2c48-4379-b810-144d16ad391clogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^Klogseq____",1696966392989,536870918]],[logseq____"^15logseq____",[33,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[33,logseq____"^Ylogseq____",logseq____"pascalsche dreiecklogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^11logseq____",logseq____"Pascalsche Dreiecklogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^Blogseq____",1696966392989,536870918]],[logseq____"^15logseq____",[33,logseq____"^;logseq____",logseq____"~u6525a6f9-bfc3-4042-bfd3-39128e0d101flogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^Klogseq____",1696966393004,536870918]],[logseq____"^15logseq____",[34,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[34,logseq____"^Ylogseq____",logseq____"rationalmachenlogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^11logseq____",logseq____"Rationalmachenlogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^Blogseq____",1696966393004,536870918]],[logseq____"^15logseq____",[34,logseq____"^;logseq____",logseq____"~u6525a6f9-45b9-4b3d-8efc-039dd4bb1677logseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^Klogseq____",1696966392991,536870918]],[logseq____"^15logseq____",[35,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[35,logseq____"^Ylogseq____",logseq____"auffrischung mathe 1logseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^11logseq____",logseq____"Auffrischung Mathe 1logseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^Blogseq____",1696966392991,536870918]],[logseq____"^15logseq____",[35,logseq____"^;logseq____",logseq____"~u6525a6f9-6f32-4b03-895a-9be047cfa395logseq____",536870920]],[logseq____"^15logseq____",[36,logseq____"^Klogseq____",1696966393019,536870918]],[logseq____"^15logseq____",[36,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[36,logseq____"^Ylogseq____",logseq____"satz von vietalogseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^11logseq____",logseq____"Satz von Vietalogseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^Blogseq____",1696966393019,536870918]],[logseq____"^15logseq____",[36,logseq____"^;logseq____",logseq____"~u6525a6f9-9a48-4970-9973-890c557a465elogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^Klogseq____",1696966393002,536870918]],[logseq____"^15logseq____",[37,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[37,logseq____"^Ylogseq____",logseq____"fixmelogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^11logseq____",logseq____"FIXMElogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^Blogseq____",1696966393002,536870918]],[logseq____"^15logseq____",[37,logseq____"^;logseq____",logseq____"~u6525a6f9-868b-4379-828e-afd9829a4b42logseq____",536870921]],[logseq____"^15logseq____",[38,logseq____"^Klogseq____",1696966393014,536870918]],[logseq____"^15logseq____",[38,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[38,logseq____"^Ylogseq____",logseq____"pq-formellogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^11logseq____",logseq____"pq-Formellogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^Blogseq____",1696966393014,536870918]],[logseq____"^15logseq____",[38,logseq____"^;logseq____",logseq____"~u6525a6f9-4590-4bef-9445-ab032f0a7f5clogseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^Klogseq____",1696966393003,536870918]],[logseq____"^15logseq____",[39,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[39,logseq____"^Ylogseq____",logseq____"nennerlogseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^11logseq____",logseq____"Nennerlogseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^Blogseq____",1696966393003,536870918]],[logseq____"^15logseq____",[39,logseq____"^;logseq____",logseq____"~u6525a6f9-cf8f-4d4e-8c8e-8f88f2b8fc29logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Potenzen]]logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Flogseq____",35,536870918]],[logseq____"^15logseq____",[40,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[40,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[40,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[40,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[40,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"~:headinglogseq____",1],536870918]],[logseq____"^15logseq____",[40,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[40,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[40,logseq____"^17logseq____",false,536870918]],[logseq____"^15logseq____",[40,logseq____"^;logseq____",logseq____"~u6525a6f8-120a-418a-b95b-69fc7c03d735logseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Qlogseq____",logseq____"![draws/2023-10-08-21-23-31.excalidraw](../assets/excalidraw_svg/2023-10-08-21-23-31.svg)logseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Flogseq____",47,536870918]],[logseq____"^15logseq____",[41,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[41,logseq____"^Vlogseq____",40,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[41,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[41,logseq____"^;logseq____",logseq____"~u6525a6f8-582a-46dd-baa5-88b527814105logseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n\\\\begin{align}\\n\\\\tan x logseq____&= \\\\frac{\\\\sin x}{\\\\cos x} logseq____&, \\\\cos x \\\\ne 0\\\\\\\\\\n\\\\sin^{-2}x-\\\\cos^2xlogseq____&=1logseq____&,f\\\\\\\\\\n\\\\sin x = \\\\cos x logseq____&= 1 logseq____&, f\\\\\\\\\\n\\\\sin^{-2}x+cos^2ylogseq____&=1logseq____&,r\\\\\\\\\\n1+tan^2xlogseq____&=\\\\frac1{\\\\cos^2x}logseq____&,\\\\cos x\\\\ne0\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Flogseq____",58,536870918]],[logseq____"^15logseq____",[42,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[42,logseq____"^Vlogseq____",61,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[42,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[42,logseq____"^;logseq____",logseq____"~u6525a6f8-c1fc-42ab-bcb5-6320cf972c0blogseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Qlogseq____",logseq____"## [[pq-Formel]]logseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Flogseq____",46,536870918]],[logseq____"^15logseq____",[43,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[43,logseq____"^Vlogseq____",68,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[43,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[43,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[43,logseq____"^Hlogseq____",38,536870918]],[logseq____"^15logseq____",[43,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[43,logseq____"^;logseq____",logseq____"~u6525a6f8-3ff6-499b-9a2a-7f2ba57547d2logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Qlogseq____",logseq____"## [[Rationalmachen]] des [[Nenner]]slogseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Flogseq____",56,536870918]],[logseq____"^15logseq____",[44,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[44,logseq____"^Vlogseq____",45,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[44,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[44,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[44,logseq____"^Hlogseq____",34,536870918]],[logseq____"^15logseq____",[44,logseq____"^Hlogseq____",39,536870918]],[logseq____"^15logseq____",[44,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[44,logseq____"^;logseq____",logseq____"~u6525a6f8-d891-4c33-9e0c-7c91eb392c38logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Qlogseq____",logseq____"# [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Flogseq____",72,536870918]],[logseq____"^15logseq____",[45,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[45,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[45,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[45,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[45,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[45,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[45,logseq____"^;logseq____",logseq____"~u6525a6f8-acdc-4a2e-8584-c473f61a64d2logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\nax^2+bx+clogseq____&=0logseq____&|:a\\\\quadlogseq____&a\\\\ne0\\\\\\\\\\nx^2+\\\\frac ba x + \\\\frac ca logseq____&= 0\\\\\\\\\\nplogseq____&=\\\\frac ba,logseq____&q = \\\\frac ca\\\\\\\\\\nx^2+px+qlogseq____&=0\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Flogseq____",68,536870918]],[logseq____"^15logseq____",[46,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[46,logseq____"^Vlogseq____",68,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[46,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[46,logseq____"^;logseq____",logseq____"~u6525a6f8-3fed-45e5-b9df-5ea3f2598265logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche }$[[Gleichungen]]$\\\\text{ sind richtig?}$\\n\\\\begin{align}\\ne^{x+y} logseq____&= e^x + e^y logseq____& ,f \\\\\\\\\\ne^{x+y} logseq____&= e^x * x^y logseq____& ,r \\\\\\\\\\ne^{x+y}logseq____&=e^{xy} logseq____& ,f\\\\\\\\\\ne^{ln(x+y)}logseq____&=x+y logseq____& ,x+ylogseq____>c \\\\\\\\\\ne^{ln(x+y)}logseq____&=e^x*e^ylogseq____&,f\\\\\\\\\\ne^{ln(x+y)}logseq____&=ln(e^x+y)logseq____&,x+ylogseq____>0\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Flogseq____",40,536870918]],[logseq____"^15logseq____",[47,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[47,logseq____"^Vlogseq____",40,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",29,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[47,logseq____"^Hlogseq____",29,536870918]],[logseq____"^15logseq____",[47,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[47,logseq____"^;logseq____",logseq____"~u6525a6f8-2739-4ba6-a947-94ddeaaf13belogseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Qlogseq____",logseq____"# Was ist Größer?logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Flogseq____",49,536870918]],[logseq____"^15logseq____",[48,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[48,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[48,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[48,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[48,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[48,logseq____"^;logseq____",logseq____"~u6525a6f8-4bc1-4747-bf62-267550a90a4flogseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Flogseq____",51,536870918]],[logseq____"^15logseq____",[49,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[49,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[49,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[49,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[49,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[49,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[49,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[49,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[49,logseq____"^;logseq____",logseq____"~u6525a6f8-7a94-4bbe-9c97-1d14b3f130e2logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Qlogseq____",logseq____"$\\\\text{Herleitung mit }$[[Quadratische Ergänzung]]\\n\\\\begin{align}\\nx^2+px+qlogseq____&=0logseq____&|logseq____&-q\\\\\\\\\\nx^2+pxlogseq____&=-qlogseq____&|logseq____&+\\\\left(\\\\frac p2\\\\right)^2\\\\\\\\\\nx^2+px+\\\\left(\\\\frac p2\\\\right)^2logseq____&=-q+\\\\left(\\\\frac p2\\\\right)^2\\\\\\\\\\n\\\\underbrace{\\\\left(x+\\\\frac p2\\\\right)^2}_\\\\text{1. binomische Formel}logseq____&=-q+\\\\left(\\\\frac p2\\\\right)^2logseq____&|logseq____&\\\\sqrt{()}\\\\\\\\\\n\\\\left|x+\\\\frac p2\\\\right|logseq____&=\\\\sqrt{\\\\frac{p^2}4-q}logseq____&,logseq____&\\\\text{ falls }\\\\frac{p^2}4-q\\\\ge0\\\\\\\\\\nx+\\\\frac p2logseq____&=\\\\pm\\\\sqrt{\\\\frac{p^2}4-q}logseq____&|logseq____&-\\\\frac p2\\\\\\\\\\nxlogseq____&=-\\\\frac p2\\\\pm\\\\sqrt{\\\\frac{p^2}4-q}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Flogseq____",43,536870918]],[logseq____"^15logseq____",[50,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[50,logseq____"^Vlogseq____",43,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",23,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[50,logseq____"^Hlogseq____",23,536870918]],[logseq____"^15logseq____",[50,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[50,logseq____"^;logseq____",logseq____"~u6525a6f8-7ed4-410a-ac78-104fe9ed2775logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Logarithmen]]logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Flogseq____",40,536870918]],[logseq____"^15logseq____",[51,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[51,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[51,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[51,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[51,logseq____"^Hlogseq____",27,536870918]],[logseq____"^15logseq____",[51,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[51,logseq____"^;logseq____",logseq____"~u6525a6f8-9db5-4bfa-8cd2-5acb6320711clogseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Qlogseq____",logseq____"[[Satz von Vieta]]\\n\\\\begin{align}\\nx^2+px+qlogseq____&=0 logseq____&logseq____& \\\\text{habe }x_{1,2}\\\\text{ als Lösung}\\\\\\\\\\nx_1+x_2logseq____&=-p logseq____&logseq____& x_1*x_2=q\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Flogseq____",50,536870918]],[logseq____"^15logseq____",[52,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[52,logseq____"^Vlogseq____",43,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[52,logseq____"^Hlogseq____",36,536870918]],[logseq____"^15logseq____",[52,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[52,logseq____"^;logseq____",logseq____"~u6525a6f8-99a5-4ae7-86a1-bdd4dd31195flogseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Qlogseq____",logseq____"#FIXME gleichung (50) hat angeblich noch ne Zeile $=x^0+3ylogseq____>0$ welche keinen Sinn ergibtlogseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Flogseq____",71,536870918]],[logseq____"^15logseq____",[53,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[53,logseq____"^Vlogseq____",71,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[53,logseq____"^Hlogseq____",37,536870918]],[logseq____"^15logseq____",[53,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[53,logseq____"^;logseq____",logseq____"~u6525a6f8-97aa-49cb-9083-c166626cf1dblogseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel für die 3. Binomische Formel}$\\n\\\\begin{align}\\n\\\\frac{\\\\frac1{a-b}+\\\\frac1{a+b}}{\\\\frac1{a-b}-\\\\frac1{a+b}}\\nlogseq____&=\\\\frac{\\\\frac{a+b+a-b}{(a+b)*(a-b)}}{\\\\frac{a+b-(a-b)}{(a+b)*(a-b)}}\\nlogseq____&=\\\\frac{a+b+a-b}{a+b-a+b}\\nlogseq____&=\\\\frac{2a}{2b}\\nlogseq____&=\\\\frac ab\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Flogseq____",70,536870918]],[logseq____"^15logseq____",[54,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[54,logseq____"^Vlogseq____",66,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[54,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[54,logseq____"^;logseq____",logseq____"~u6525a6f8-b316-4f17-85de-fb0cc79d625flogseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Qlogseq____",logseq____"## [[Binomialkoeffizient]]logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Flogseq____",69,536870918]],[logseq____"^15logseq____",[55,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[55,logseq____"^Vlogseq____",74,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[55,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[55,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[55,logseq____"^Hlogseq____",28,536870918]],[logseq____"^15logseq____",[55,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[55,logseq____"^;logseq____",logseq____"~u6525a6f8-314c-430a-94e9-20cd858b1541logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n|y|logseq____&=\\\\begin{cases}\\ny logseq____&\\\\text{ falls } y\\\\ge0\\\\\\\\\\n-y logseq____&\\\\text{ falls } ylogseq____<0\\\\\\\\\\n\\\\end{cases}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Flogseq____",71,536870918]],[logseq____"^15logseq____",[56,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[56,logseq____"^Vlogseq____",45,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[56,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[56,logseq____"^;logseq____",logseq____"~u6525a6f8-e7d2-4bb3-b609-7eed3b8cac51logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Qlogseq____",logseq____"cosa -logseq____> beliebige Variable\\ncubus -logseq____> hoch 3logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Flogseq____",82,536870918]],[logseq____"^15logseq____",[57,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[57,logseq____"^Vlogseq____",82,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[57,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[57,logseq____"^;logseq____",logseq____"~u6525a6f8-2eda-43fe-949f-58c3c0db967flogseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Qlogseq____",logseq____"$\\\\frac12 \\\\sqrt2, \\\\frac12, \\\\frac12\\\\sqrt3 \\\\text{ sind werte von }\\\\sin x$\\n\\\\begin{align}\\n\\\\sin 30\\\\degreelogseq____&=\\\\frac12\\\\\\\\\\n\\\\sin 45\\\\degree logseq____&= \\\\frac12\\\\sqrt2 \\\\\\\\\\n\\\\sin 60\\\\degree logseq____&= \\\\frac12 \\\\sqrt3 \\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Flogseq____",61,536870918]],[logseq____"^15logseq____",[58,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[58,logseq____"^Vlogseq____",61,536870918]],[logseq____"^15logseq____",[58,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[58,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[58,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[58,logseq____"^;logseq____",logseq____"~u6525a6f8-6208-4b7a-9f4e-6f0c23875491logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n\\\\ln a + \\\\ln b logseq____&= \\\\ln(a*b) \\\\\\\\\\n\\\\ln(-a) logseq____&= \\\\frac1{\\\\ln a}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Flogseq____",79,536870918]],[logseq____"^15logseq____",[59,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[59,logseq____"^Vlogseq____",51,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[59,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[59,logseq____"^;logseq____",logseq____"~u6525a6f8-2a82-497e-8f67-2015b52c1abblogseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Qlogseq____",logseq____"# [[Potenzen]] und [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Flogseq____",66,536870918]],[logseq____"^15logseq____",[60,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[60,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[60,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[60,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[60,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[60,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[60,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[60,logseq____"^;logseq____",logseq____"~u6525a6f8-94e8-4f35-9616-95adaa8d3c27logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Trigonometrie]]logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Flogseq____",48,536870918]],[logseq____"^15logseq____",[61,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[61,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[61,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[61,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[61,logseq____"^Hlogseq____",31,536870918]],[logseq____"^15logseq____",[61,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[61,logseq____"^;logseq____",logseq____"~u6525a6f8-883a-41fe-bce0-7d76fcd524b0logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Qlogseq____",logseq____"\\\\begin{array}{c}\\n{0\\\\choose 0}\\n\\\\\\\\\\n{1\\\\choose 0} {1\\\\choose 1}\\n\\\\\\\\\\n{2\\\\choose 0} {2\\\\choose 1} {2\\\\choose 2}\\n\\\\\\\\\\n{3\\\\choose 0} {3\\\\choose 1} {3\\\\choose 2} {3\\\\choose 3}\\n\\\\\\\\\\n\\\\cdots\\n\\\\end{array}logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Flogseq____",80,536870918]],[logseq____"^15logseq____",[62,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[62,logseq____"^Vlogseq____",55,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[62,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[62,logseq____"^;logseq____",logseq____"~u6525a6f8-5561-407a-83a4-da6a15e1cc59logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\n\\\\sqrt[n]{a^n}logseq____&=1^\\\\frac nn=a^1=a\\\\\\\\\\n\\\\sqrt[n]{\\\\frac ab} logseq____&= \\\\frac{\\\\sqrt[n]a}{\\\\sqrt[n]b}\\\\\\\\\\n\\\\left(\\\\sqrt[n]a\\\\right)^mlogseq____&=a^\\\\frac mn\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Flogseq____",73,536870918]],[logseq____"^15logseq____",[63,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[63,logseq____"^Vlogseq____",45,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[63,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[63,logseq____"^;logseq____",logseq____"~u6525a6f8-bfff-461b-b740-d37d0a2a48e6logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Qlogseq____",logseq____"#FIXME $\\\\sin^{-2}x+cos^2y=1,r$ ist falschlogseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Flogseq____",42,536870918]],[logseq____"^15logseq____",[64,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[64,logseq____"^Vlogseq____",42,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[64,logseq____"^Hlogseq____",37,536870918]],[logseq____"^15logseq____",[64,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[64,logseq____"^;logseq____",logseq____"~u6525a6f8-a6a5-4c14-81c7-a8323346b915logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n$\\\\text{Wenn }alogseq____>0\\\\text{, dann}$\\n\\\\begin{align}\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a\\\\sqrt{a}logseq____&,r\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a^2-\\\\sqrt{a}logseq____&,f\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=\\\\sqrt{a^3}logseq____&,r\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a^{\\\\frac32}logseq____&,r\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Flogseq____",49,536870918]],[logseq____"^15logseq____",[65,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[65,logseq____"^Vlogseq____",49,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[65,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[65,logseq____"^;logseq____",logseq____"~u6525a6f8-b2b1-477c-9eaa-15ed790b4932logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Qlogseq____",logseq____"# [[Binomische Formeln]]logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Flogseq____",61,536870918]],[logseq____"^15logseq____",[66,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[66,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[66,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[66,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[66,logseq____"^Hlogseq____",30,536870918]],[logseq____"^15logseq____",[66,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[66,logseq____"^;logseq____",logseq____"~u6525a6f8-414f-4922-a796-42809acab971logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Qlogseq____",logseq____"$\\\\text{Wenn }alogseq____>0\\\\text{, dann}$\\n\\\\begin{align}\\n\\\\frac b{\\\\sqrt a} = \\\\frac b{\\\\sqrt a}*\\\\frac{\\\\sqrt a}{\\\\sqrt a} = \\\\frac {b\\\\sqrt a}a\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Flogseq____",44,536870918]],[logseq____"^15logseq____",[67,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[67,logseq____"^Vlogseq____",44,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[67,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[67,logseq____"^;logseq____",logseq____"~u6525a6f8-af02-4b55-84a2-14d623cb7b2blogseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Qlogseq____",logseq____"# [[Quadratische Gleichungen]]logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Flogseq____",45,536870918]],[logseq____"^15logseq____",[68,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[68,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[68,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[68,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[68,logseq____"^Hlogseq____",26,536870918]],[logseq____"^15logseq____",[68,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[68,logseq____"^;logseq____",logseq____"~u6525a6f8-4404-4aed-81bb-2203635fbc83logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n(2x+y)^4logseq____&=(2x)^4+4*(2x)^3y+6*(2x)^2y^2+4*2xy^3+y^4\\\\notag\\\\\\\\\\nlogseq____&=16x^4+32x^3y+24x^2y^2+8xy^3+y^4\\\\\\\\\\n(1+\\\\sqrt x)^5*(1-\\\\sqrt x)^5logseq____&=2+20x+40x^2\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Flogseq____",78,536870918]],[logseq____"^15logseq____",[69,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[69,logseq____"^Vlogseq____",74,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[69,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[69,logseq____"^;logseq____",logseq____"~u6525a6f8-d5f9-48fe-b284-25479a06593dlogseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n(a+b)^2logseq____&=a^2+2ab+b^2logseq____&,\\\\text{ 1. Binomische Formel}\\\\\\\\\\n(a-b)^2logseq____&=a^2-2ab+b^2logseq____&,\\\\text{ 2. Binomische Formel}\\\\\\\\\\n(a+b)(a-b)logseq____&=a^2-b^2logseq____&,\\\\text{ 3. Binomische Formel}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Flogseq____",66,536870918]],[logseq____"^15logseq____",[70,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[70,logseq____"^Vlogseq____",66,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[70,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[70,logseq____"^;logseq____",logseq____"~u6525a6f8-d1ef-418f-ad7f-4553f94a3d5dlogseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\\\sqrt{x^4+6x^2y+9y^2}logseq____&=\\\\sqrt{(x^2+3y)^2}=x^2+3y\\\\\\\\\\n\\\\sqrt {x + \\\\sqrt{x^2-y^2}}\\\\sqrt{x-\\\\sqrt{x^2-y^2}}logseq____&=\\\\sqrt{\\\\left(x + \\\\sqrt{x^2-y^2}\\\\right)\\\\left(x-\\\\sqrt{x^2-y^2}\\\\right)}\\\\notag\\\\\\\\\\nlogseq____&=\\\\sqrt{x^2-(x^2-y^2)}\\\\notag\\\\\\\\\\nlogseq____&=\\\\sqrt{y^2}=\\\\left|y\\\\right|\\\\\\\\\\n\\\\sqrt[5]{a\\\\sqrt[3]a}=\\\\sqrt[5]{\\\\sqrt[3]{a^3}\\\\sqrt[3]a}\\nlogseq____&=\\\\sqrt[5]{\\\\sqrt[3]{a^4}}\\n=\\\\sqrt[5]{a^\\\\frac43}\\n=a^{\\\\frac43\\\\frac15}=a^\\\\frac4{15}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Flogseq____",63,536870918]],[logseq____"^15logseq____",[71,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[71,logseq____"^Vlogseq____",45,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[71,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[71,logseq____"^;logseq____",logseq____"~u6525a6f8-d5c3-415d-8bbd-4bf4bef2c884logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Qlogseq____",logseq____"# [[Potenzen]]logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Flogseq____",60,536870918]],[logseq____"^15logseq____",[72,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[72,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[72,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[72,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[72,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[72,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[72,logseq____"^;logseq____",logseq____"~u6525a6f8-11fb-4735-a08f-945d6246c1d9logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Qlogseq____",logseq____"$\\\\text{Die Lösung von } x^n-a=0 \\\\text{ ist } x=\\\\sqrt[n]a$ #FIXME ich glaube hier fehlt logseq____>0 constraintlogseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Flogseq____",45,536870918]],[logseq____"^15logseq____",[73,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[73,logseq____"^Vlogseq____",45,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[73,logseq____"^Hlogseq____",37,536870918]],[logseq____"^15logseq____",[73,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[73,logseq____"^;logseq____",logseq____"~u6525a6f8-eb9a-46f2-bfce-146837c8149clogseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Qlogseq____",logseq____"## [[Pascalsches Dreieck]]logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Flogseq____",54,536870918]],[logseq____"^15logseq____",[74,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[74,logseq____"^Vlogseq____",66,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[74,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[74,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[74,logseq____"^Hlogseq____",25,536870918]],[logseq____"^15logseq____",[74,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[74,logseq____"^;logseq____",logseq____"~u6525a6f8-4d7b-4811-b769-6c08f96f34bclogseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Qlogseq____",logseq____"$\\\\text{Für } x=\\\\frac25 \\\\text{ und } y=\\\\frac37 \\\\text{ ist }\\\\frac xy$\\n\\\\begin{align}\\n\\\\frac xy = \\\\frac{\\\\frac25}{\\\\frac37} = \\\\frac{2*7}{3*5}=\\\\frac{14}{15}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Flogseq____",48,536870918]],[logseq____"^15logseq____",[75,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[75,logseq____"^Vlogseq____",48,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[75,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[75,logseq____"^;logseq____",logseq____"~u6525a6f8-f4ff-4420-8ec3-57596050ab40logseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Qlogseq____",logseq____"#FIXME $(1+\\\\sqrt x)^5*(1-\\\\sqrt x)^5=2+20x+40x^2$ ist Falschlogseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Flogseq____",69,536870918]],[logseq____"^15logseq____",[76,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[76,logseq____"^Vlogseq____",69,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[76,logseq____"^Hlogseq____",37,536870918]],[logseq____"^15logseq____",[76,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[76,logseq____"^;logseq____",logseq____"~u6525a6f8-d36d-415c-b622-95e2a63aa8eblogseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n(a+b)^3(a^2+b^2)^3(a-b)^3logseq____&=(a^2+b^2)^3\\\\left((a+b)(a-b)\\\\right)^3\\\\notag\\\\\\\\\\nlogseq____&=(a^2+b^2)^3(a^2-b^2)^3\\\\notag\\\\\\\\\\nlogseq____&=\\\\left((a^2+b^2)(a^2-b^2)\\\\right)^3\\\\notag\\\\\\\\\\nlogseq____&=(a^4-b^4)^3\\\\\\\\\\n\\\\frac{a-b}{(a+b)^{-1}}logseq____&=(a-b)(a+b)\\\\notag\\\\\\\\\\nlogseq____&=a^2-b^2\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Flogseq____",84,536870918]],[logseq____"^15logseq____",[77,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[77,logseq____"^Vlogseq____",72,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[77,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[77,logseq____"^;logseq____",logseq____"~u6525a6f8-ae8c-4ad5-9108-6850a06d940elogseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Qlogseq____",logseq____"\\\\begin{array}{c} (a+b)^0logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&1 \\\\\\\\\\n(a+b)^1logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&1 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^2logseq____&logseq____&logseq____&logseq____&logseq____&logseq____& 1 logseq____&logseq____& 2 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^3logseq____&logseq____&logseq____&logseq____&logseq____&1 logseq____&logseq____& 3 logseq____&logseq____& 3 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^4logseq____&logseq____&logseq____&logseq____& 1 logseq____&logseq____& 4 logseq____&logseq____& 6 logseq____&logseq____& 4 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^5logseq____&logseq____&logseq____& 1 logseq____&logseq____& 5 logseq____&logseq____& 10 logseq____&logseq____& 10 logseq____&logseq____& 5 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^6logseq____&logseq____& 1 logseq____&logseq____& 6 logseq____&logseq____& 15 logseq____&logseq____& 20 logseq____&logseq____& 15 logseq____&logseq____& 6 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^7logseq____&1 logseq____&logseq____& 7 logseq____&logseq____&21 logseq____&logseq____& 35 logseq____&logseq____& 35 logseq____&logseq____& \\\\cdots\\\\end{array}logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Flogseq____",74,536870918]],[logseq____"^15logseq____",[78,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[78,logseq____"^Vlogseq____",74,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[78,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[78,logseq____"^;logseq____",logseq____"~u6525a6f8-3baa-4e7a-89ec-628577958835logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n$\\\\text{Wenn } 10^x=y \\\\text{, dann}$\\n\\\\begin{align}\\nxlogseq____&=\\\\lg y logseq____& ,r\\\\\\\\\\nxlogseq____&=\\\\log_y10logseq____&,f\\\\\\\\\\nxlogseq____&=\\\\log_{10}ylogseq____&,r \\\\\\\\\\n\\\\ln 4 - \\\\ln 2 logseq____&= \\\\ln 2 logseq____&, r \\\\\\\\\\n\\\\ln 4 - \\\\ln 2 logseq____&= \\\\ln 8 logseq____&, f \\\\\\\\\\n\\\\ln 4 + \\\\ln 2 logseq____&= \\\\ln 8 logseq____&, r \\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Flogseq____",51,536870918]],[logseq____"^15logseq____",[79,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[79,logseq____"^Vlogseq____",51,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[79,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[79,logseq____"^;logseq____",logseq____"~u6525a6f8-af82-4eed-9b23-54cdf76da2calogseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Qlogseq____",logseq____"Das [[Pascalsche Dreieck]] lässt sich auch mit den entsprechenden Binomialkoeffizienten darstellenlogseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Flogseq____",55,536870918]],[logseq____"^15logseq____",[80,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[80,logseq____"^Vlogseq____",55,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[80,logseq____"^Hlogseq____",33,536870918]],[logseq____"^15logseq____",[80,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[80,logseq____"^;logseq____",logseq____"~u6525a6f8-06c5-4786-9b69-91b58e947deblogseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\\\underbrace{\\\\frac6{2+\\\\sqrt2}*\\\\frac{2-\\\\sqrt2}{2-\\\\sqrt2}\\n= \\\\frac{6(2-\\\\sqrt2)}{2^2-(\\\\sqrt2)^2}}_\\\\text{3. binomische Formel}\\nlogseq____&=\\\\frac{6(2-\\\\sqrt2)}2=3(2-\\\\sqrt2)\\\\\\\\\\n\\\\frac{a-b}{\\\\sqrt a+\\\\sqrt b}logseq____&=\\\\frac{a-b}{\\\\sqrt a + \\\\sqrt b}\\\\frac{\\\\sqrt a-\\\\sqrt b}{\\\\sqrt a-\\\\sqrt b}logseq____&, a,b,logseq____>0\\\\notag\\\\\\\\\\n=\\\\frac{(a-b)(\\\\sqrt a-\\\\sqrt b)}{(a-b)}logseq____&=\\\\sqrt a\\\\sqrt b\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Flogseq____",67,536870918]],[logseq____"^15logseq____",[81,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[81,logseq____"^Vlogseq____",44,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",39,536870918]],[logseq____"^15logseq____",[81,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[81,logseq____"^;logseq____",logseq____"~u6525a6f8-6d8c-4166-b143-2d3d8ece73e2logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Qlogseq____",logseq____"$\\\\text{Alte Schreibweise}$\\n\\\\begin{align}\\n\\\\text{cosa }logseq____&\\\\text{plus }logseq____&\\\\text{cubus }logseq____&\\\\text{acq }logseq____&6\\\\\\\\\\nxlogseq____&+logseq____&x^3logseq____&=logseq____&6\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Flogseq____",77,536870918]],[logseq____"^15logseq____",[82,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[82,logseq____"^Vlogseq____",72,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[82,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[82,logseq____"^;logseq____",logseq____"~u6525a6f8-f718-4571-87ef-97c163699134logseq____",536870918]],[logseq____"^15logseq____",[83,logseq____"^Qlogseq____",logseq____"$\\\\text{Häufige Falle:}$\\n\\\\begin{align}\\n\\\\left((-1)^2\\\\right)^\\\\frac12logseq____&=(-1)^\\\\frac22logseq____&=(-1)^1logseq____&=-1\\\\\\\\\\n\\\\left((-1)^2\\\\right)^\\\\frac12logseq____&=1^\\\\frac12logseq____&logseq____&=1\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[83,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[83,logseq____"^Flogseq____",65,536870918]],[logseq____"^15logseq____",[83,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[83,logseq____"^Vlogseq____",49,536870918]],[logseq____"^15logseq____",[83,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[83,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[83,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[83,logseq____"^;logseq____",logseq____"~u6525a6f8-025b-4a4e-ba28-78a7717d2763logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\na^nlogseq____&=\\\\underbrace{a*a*\\\\cdots*n}_n logseq____& a,blogseq____>0\\\\\\\\\\na^2b^2logseq____&=(ab)^n\\\\\\\\\\n\\\\frac{a^n}{b^n}logseq____&=\\\\left(\\\\frac ab\\\\right)^n\\\\\\\\\\na^na^mlogseq____&=a^{n+m}\\\\\\\\\\n\\\\frac1{a^n}logseq____&=a^{-n}\\\\\\\\\\n(a^n)^mlogseq____&=a^{nm}\\\\\\\\\\na^0logseq____&=1\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Flogseq____",72,536870918]],[logseq____"^15logseq____",[84,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[84,logseq____"^Vlogseq____",72,536870918]],[logseq____"^15logseq____",[84,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[84,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[84,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[84,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[84,logseq____"^;logseq____",logseq____"~u6525a6f8-3428-4ec4-8177-46caa3d212eflogseq____",536870918]],[logseq____"^15logseq____",[86,logseq____"^Klogseq____",1696966393258,536870919]],[logseq____"^15logseq____",[86,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[86,logseq____"^Ylogseq____",logseq____"auffrischung mathe 2logseq____",536870919]],[logseq____"^15logseq____",[86,logseq____"^11logseq____",logseq____"Auffrischung Mathe 2logseq____",536870919]],[logseq____"^15logseq____",[86,logseq____"^Blogseq____",1696966393258,536870919]],[logseq____"^15logseq____",[86,logseq____"^;logseq____",logseq____"~u6525a6f9-fd39-4511-9de4-2c3a8d004a99logseq____",536870920]],[logseq____"^15logseq____",[87,logseq____"^Klogseq____",1696966393257,536870919]],[logseq____"^15logseq____",[87,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[87,logseq____"^Ylogseq____",logseq____"linkslogseq____",536870919]],[logseq____"^15logseq____",[87,logseq____"^11logseq____",logseq____"Linkslogseq____",536870919]],[logseq____"^15logseq____",[87,logseq____"^Blogseq____",1696966393257,536870919]],[logseq____"^15logseq____",[87,logseq____"^;logseq____",logseq____"~u6525a6f9-990f-4aea-bfdc-57c235258d9clogseq____",536870919]],[logseq____"^15logseq____",[88,logseq____"^Klogseq____",1696966393259,536870919]],[logseq____"^15logseq____",[88,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[88,logseq____"^Ylogseq____",logseq____"wolframalphalogseq____",536870919]],[logseq____"^15logseq____",[88,logseq____"^11logseq____",logseq____"Wolframalphalogseq____",536870919]],[logseq____"^15logseq____",[88,logseq____"^Blogseq____",1696966393259,536870919]],[logseq____"^15logseq____",[88,logseq____"^;logseq____",logseq____"~u6525a6f9-b335-42a6-b5ed-9f1da5c6f4b0logseq____",536870919]],[logseq____"^15logseq____",[89,logseq____"^Qlogseq____",logseq____"# [[Links]]logseq____",536870919]],[logseq____"^15logseq____",[89,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[89,logseq____"^Flogseq____",86,536870919]],[logseq____"^15logseq____",[89,logseq____"^Xlogseq____",86,536870919]],[logseq____"^15logseq____",[89,logseq____"^Vlogseq____",86,536870919]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",86,536870919]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",87,536870919]],[logseq____"^15logseq____",[89,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870919]],[logseq____"^15logseq____",[89,logseq____"^Jlogseq____",[],536870919]],[logseq____"^15logseq____",[89,logseq____"^Hlogseq____",87,536870919]],[logseq____"^15logseq____",[89,logseq____"^17logseq____",false,536870919]],[logseq____"^15logseq____",[89,logseq____"^;logseq____",logseq____"~u6525a6f9-f3e6-45f4-bb81-515061128985logseq____",536870919]],[logseq____"^15logseq____",[90,logseq____"^Qlogseq____",logseq____"[[Wolframalpha]]logseq____",536870919]],[logseq____"^15logseq____",[90,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[90,logseq____"^Flogseq____",89,536870919]],[logseq____"^15logseq____",[90,logseq____"^Xlogseq____",86,536870919]],[logseq____"^15logseq____",[90,logseq____"^Vlogseq____",89,536870919]],[logseq____"^15logseq____",[90,logseq____"^Ulogseq____",86,536870919]],[logseq____"^15logseq____",[90,logseq____"^Ulogseq____",87,536870919]],[logseq____"^15logseq____",[90,logseq____"^Ulogseq____",88,536870919]],[logseq____"^15logseq____",[90,logseq____"^Hlogseq____",88,536870919]],[logseq____"^15logseq____",[90,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[90,logseq____"^;logseq____",logseq____"~u6525a6f9-b645-4db5-8b85-d0e22ba1c9f8logseq____",536870919]],[logseq____"^15logseq____",[91,logseq____"^Qlogseq____",logseq____"https://www.wolframalpha.comlogseq____",536870919]],[logseq____"^15logseq____",[91,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[91,logseq____"^Flogseq____",90,536870919]],[logseq____"^15logseq____",[91,logseq____"^Xlogseq____",86,536870919]],[logseq____"^15logseq____",[91,logseq____"^Vlogseq____",90,536870919]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",86,536870919]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",87,536870919]],[logseq____"^15logseq____",[91,logseq____"^Ulogseq____",88,536870919]],[logseq____"^15logseq____",[91,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[91,logseq____"^;logseq____",logseq____"~u6525a6f9-21ee-41e5-b56a-69e11bccd7d9logseq____",536870919]],[logseq____"^15logseq____",[92,logseq____"^Qlogseq____",logseq____"logseq____",536870919]],[logseq____"^15logseq____",[92,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[92,logseq____"^Flogseq____",89,536870919]],[logseq____"^15logseq____",[92,logseq____"^Xlogseq____",86,536870919]],[logseq____"^15logseq____",[92,logseq____"^Vlogseq____",86,536870919]],[logseq____"^15logseq____",[92,logseq____"^Ulogseq____",86,536870919]],[logseq____"^15logseq____",[92,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[92,logseq____"^;logseq____",logseq____"~u6525a6f9-5e8f-4395-8c68-7cfc1709d235logseq____",536870919]],[logseq____"^15logseq____",[94,logseq____"^Klogseq____",1696966393288,536870920]],[logseq____"^15logseq____",[94,logseq____"^@logseq____",false,536870920]],[logseq____"^15logseq____",[94,logseq____"^Ylogseq____",logseq____"auffrischung mathelogseq____",536870920]],[logseq____"^15logseq____",[94,logseq____"^11logseq____",logseq____"Auffrischung Mathelogseq____",536870920]],[logseq____"^15logseq____",[94,logseq____"^Blogseq____",1696966393288,536870920]],[logseq____"^15logseq____",[94,logseq____"^;logseq____",logseq____"~u6525a6f9-cfd6-48aa-b64b-1e9f3c4a1502logseq____",536870927]],[logseq____"^15logseq____",[95,logseq____"^Klogseq____",1696966393292,536870920]],[logseq____"^15logseq____",[95,logseq____"^@logseq____",false,536870920]],[logseq____"^15logseq____",[95,logseq____"^Ylogseq____",logseq____"auffrischung mathe 3logseq____",536870920]],[logseq____"^15logseq____",[95,logseq____"^11logseq____",logseq____"Auffrischung Mathe 3logseq____",536870920]],[logseq____"^15logseq____",[95,logseq____"^Blogseq____",1696966393292,536870920]],[logseq____"^15logseq____",[95,logseq____"^;logseq____",logseq____"~u6525a6f9-b49f-480a-83ba-8c01fff00f3flogseq____",536870920]],[logseq____"^15logseq____",[96,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 1]]logseq____",536870920]],[logseq____"^15logseq____",[96,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[96,logseq____"^Flogseq____",94,536870920]],[logseq____"^15logseq____",[96,logseq____"^Xlogseq____",94,536870920]],[logseq____"^15logseq____",[96,logseq____"^Vlogseq____",94,536870920]],[logseq____"^15logseq____",[96,logseq____"^Ulogseq____",35,536870920]],[logseq____"^15logseq____",[96,logseq____"^Ulogseq____",94,536870920]],[logseq____"^15logseq____",[96,logseq____"^Hlogseq____",35,536870920]],[logseq____"^15logseq____",[96,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[96,logseq____"^;logseq____",logseq____"~u6525a6f9-d54d-4ee4-9949-416ea2541abclogseq____",536870920]],[logseq____"^15logseq____",[97,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 2]]logseq____",536870920]],[logseq____"^15logseq____",[97,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[97,logseq____"^Flogseq____",96,536870920]],[logseq____"^15logseq____",[97,logseq____"^Xlogseq____",94,536870920]],[logseq____"^15logseq____",[97,logseq____"^Vlogseq____",94,536870920]],[logseq____"^15logseq____",[97,logseq____"^Ulogseq____",86,536870920]],[logseq____"^15logseq____",[97,logseq____"^Ulogseq____",94,536870920]],[logseq____"^15logseq____",[97,logseq____"^Hlogseq____",86,536870920]],[logseq____"^15logseq____",[97,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[97,logseq____"^;logseq____",logseq____"~u6525a6f9-3d95-4982-9766-325dcdb42729logseq____",536870920]],[logseq____"^15logseq____",[98,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 3]]logseq____",536870920]],[logseq____"^15logseq____",[98,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[98,logseq____"^Flogseq____",97,536870920]],[logseq____"^15logseq____",[98,logseq____"^Xlogseq____",94,536870920]],[logseq____"^15logseq____",[98,logseq____"^Vlogseq____",94,536870920]],[logseq____"^15logseq____",[98,logseq____"^Ulogseq____",94,536870920]],[logseq____"^15logseq____",[98,logseq____"^Ulogseq____",95,536870920]],[logseq____"^15logseq____",[98,logseq____"^Hlogseq____",95,536870920]],[logseq____"^15logseq____",[98,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[98,logseq____"^;logseq____",logseq____"~u6525a6f9-74c6-492f-b266-7a729cf75513logseq____",536870920]],[logseq____"^15logseq____",[100,logseq____"^Klogseq____",1696966393475,536870921]],[logseq____"^15logseq____",[100,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[100,logseq____"^Ylogseq____",logseq____"wahrheitswerteverlauflogseq____",536870921]],[logseq____"^15logseq____",[100,logseq____"^11logseq____",logseq____"Wahrheitswerteverlauflogseq____",536870921]],[logseq____"^15logseq____",[100,logseq____"^Blogseq____",1696966393475,536870921]],[logseq____"^15logseq____",[100,logseq____"^;logseq____",logseq____"~u6525a6f9-5438-488d-8fc8-75a751ad0475logseq____",536870921]],[logseq____"^15logseq____",[101,logseq____"^Klogseq____",1696966393465,536870921]],[logseq____"^15logseq____",[101,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[101,logseq____"^Ylogseq____",logseq____"aussagenlogische variablelogseq____",536870921]],[logseq____"^15logseq____",[101,logseq____"^11logseq____",logseq____"Aussagenlogische variablelogseq____",536870921]],[logseq____"^15logseq____",[101,logseq____"^Blogseq____",1696966393465,536870921]],[logseq____"^15logseq____",[101,logseq____"^;logseq____",logseq____"~u6525a6f9-9a20-4b15-85d2-877dc0db94eflogseq____",536870921]],[logseq____"^15logseq____",[102,logseq____"^Klogseq____",1696966393456,536870921]],[logseq____"^15logseq____",[102,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[102,logseq____"^Ylogseq____",logseq____"wikipedialogseq____",536870921]],[logseq____"^15logseq____",[102,logseq____"^11logseq____",logseq____"Wikipedialogseq____",536870921]],[logseq____"^15logseq____",[102,logseq____"^Blogseq____",1696966393456,536870921]],[logseq____"^15logseq____",[102,logseq____"^;logseq____",logseq____"~u6525a6f9-37a6-4653-b3fb-9650c65600c8logseq____",536870921]],[logseq____"^15logseq____",[103,logseq____"^Klogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[103,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[103,logseq____"^Ylogseq____",logseq____"formellogseq____",536870921]],[logseq____"^15logseq____",[103,logseq____"^11logseq____",logseq____"Formellogseq____",536870921]],[logseq____"^15logseq____",[103,logseq____"^Blogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[103,logseq____"^;logseq____",logseq____"~u6525a6f9-a5eb-4812-90e0-8ebf882d7e51logseq____",536870921]],[logseq____"^15logseq____",[104,logseq____"^Klogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[104,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[104,logseq____"^Ylogseq____",logseq____"wahrheitswertlogseq____",536870921]],[logseq____"^15logseq____",[104,logseq____"^11logseq____",logseq____"Wahrheitswertlogseq____",536870921]],[logseq____"^15logseq____",[104,logseq____"^Blogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[104,logseq____"^;logseq____",logseq____"~u6525a6f9-ae75-4afd-8f64-4fb7554ab42blogseq____",536870921]],[logseq____"^15logseq____",[105,logseq____"^Klogseq____",1696966393455,536870921]],[logseq____"^15logseq____",[105,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[105,logseq____"^Ylogseq____",logseq____"\\logseq____"mathematische grundlagen der informatik\\logseq____", 5. auflage 2011logseq____",536870921]],[logseq____"^15logseq____",[105,logseq____"^11logseq____",logseq____"\\logseq____"Mathematische Grundlagen der Informatik\\logseq____", 5. Auflage 2011logseq____",536870921]],[logseq____"^15logseq____",[105,logseq____"^Blogseq____",1696966393455,536870921]],[logseq____"^15logseq____",[105,logseq____"^;logseq____",logseq____"~u6525a6f9-d514-4276-a472-48ee2b8700e1logseq____",536870921]],[logseq____"^15logseq____",[106,logseq____"^Klogseq____",1696966393476,536870921]],[logseq____"^15logseq____",[106,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[106,logseq____"^Ylogseq____",logseq____"tantologielogseq____",536870921]],[logseq____"^15logseq____",[106,logseq____"^11logseq____",logseq____"Tantologielogseq____",536870921]],[logseq____"^15logseq____",[106,logseq____"^Blogseq____",1696966393476,536870921]],[logseq____"^15logseq____",[106,logseq____"^;logseq____",logseq____"~u6525a6f9-d20f-41ed-81fe-2e9e7ceca21flogseq____",536870921]],[logseq____"^15logseq____",[107,logseq____"^Klogseq____",1696966393474,536870921]],[logseq____"^15logseq____",[107,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[107,logseq____"^Ylogseq____",logseq____"kontradiktionlogseq____",536870921]],[logseq____"^15logseq____",[107,logseq____"^11logseq____",logseq____"Kontradiktionlogseq____",536870921]],[logseq____"^15logseq____",[107,logseq____"^Blogseq____",1696966393474,536870921]],[logseq____"^15logseq____",[107,logseq____"^;logseq____",logseq____"~u6525a6f9-f0e9-4cd9-839d-f8941c18615blogseq____",536870921]],[logseq____"^15logseq____",[108,logseq____"^Klogseq____",1696966393462,536870921]],[logseq____"^15logseq____",[108,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[108,logseq____"^Ylogseq____",logseq____"semantiklogseq____",536870921]],[logseq____"^15logseq____",[108,logseq____"^11logseq____",logseq____"Semantiklogseq____",536870921]],[logseq____"^15logseq____",[108,logseq____"^Blogseq____",1696966393462,536870921]],[logseq____"^15logseq____",[108,logseq____"^;logseq____",logseq____"~u6525a6f9-b18f-43b9-aba7-62b0fcb315e5logseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^Klogseq____",1696966393476,536870921]],[logseq____"^15logseq____",[109,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[109,logseq____"^Ylogseq____",logseq____"logisch äquivalentlogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^11logseq____",logseq____"logisch äquivalentlogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^Blogseq____",1696966393476,536870921]],[logseq____"^15logseq____",[109,logseq____"^;logseq____",logseq____"~u6525a6f9-2cf9-4b1a-a558-9136ce89914flogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^Klogseq____",1696966393468,536870921]],[logseq____"^15logseq____",[110,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[110,logseq____"^Ylogseq____",logseq____"variablelogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^11logseq____",logseq____"Variablelogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^Blogseq____",1696966393468,536870921]],[logseq____"^15logseq____",[110,logseq____"^;logseq____",logseq____"~u6525a6f9-5165-4066-baeb-f1b543dc9d2flogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^Klogseq____",1696966393469,536870921]],[logseq____"^15logseq____",[111,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[111,logseq____"^Ylogseq____",logseq____"tabellenregelnlogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^11logseq____",logseq____"Tabellenregelnlogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^Blogseq____",1696966393469,536870921]],[logseq____"^15logseq____",[111,logseq____"^;logseq____",logseq____"~u6525a6f9-2008-4018-b302-9589f33f8ff3logseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^Klogseq____",1696966393460,536870921]],[logseq____"^15logseq____",[112,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[112,logseq____"^Ylogseq____",logseq____"aussagenlogseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^11logseq____",logseq____"Aussagenlogseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^Blogseq____",1696966393460,536870921]],[logseq____"^15logseq____",[112,logseq____"^;logseq____",logseq____"~u6525a6f9-2c63-49f5-a634-89304aabc21blogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^Klogseq____",1696966393466,536870921]],[logseq____"^15logseq____",[113,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[113,logseq____"^Ylogseq____",logseq____"verknüpfungenlogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^11logseq____",logseq____"Verknüpfungenlogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^Blogseq____",1696966393466,536870921]],[logseq____"^15logseq____",[113,logseq____"^;logseq____",logseq____"~u6525a6f9-3680-4905-8b20-36d05edfaac3logseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^Klogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[114,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[114,logseq____"^Ylogseq____",logseq____"aussageformellogseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^11logseq____",logseq____"Aussageformellogseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^Blogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[114,logseq____"^;logseq____",logseq____"~u6525a6f9-7518-4d60-868c-5a5659473283logseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^Klogseq____",1696966393463,536870921]],[logseq____"^15logseq____",[115,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[115,logseq____"^Ylogseq____",logseq____"syntaxlogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^11logseq____",logseq____"Syntaxlogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^Blogseq____",1696966393463,536870921]],[logseq____"^15logseq____",[115,logseq____"^;logseq____",logseq____"~u6525a6f9-6471-47c8-b2c9-b769dbef2f7alogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^Klogseq____",1696966393459,536870921]],[logseq____"^15logseq____",[116,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[116,logseq____"^Ylogseq____",logseq____"verknüpfung von aussagenlogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^11logseq____",logseq____"Verknüpfung von Aussagenlogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^Blogseq____",1696966393459,536870921]],[logseq____"^15logseq____",[116,logseq____"^;logseq____",logseq____"~u6525a6f9-0805-48ca-957d-cf283d4e8a64logseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^Klogseq____",1696966393475,536870921]],[logseq____"^15logseq____",[117,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[117,logseq____"^Ylogseq____",logseq____"schreibweiselogseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^11logseq____",logseq____"Schreibweiselogseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^Blogseq____",1696966393475,536870921]],[logseq____"^15logseq____",[117,logseq____"^;logseq____",logseq____"~u6525a6f9-5917-46a6-b4b6-bf3c1110777elogseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^Klogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[118,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[118,logseq____"^Ylogseq____",logseq____"belegunglogseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^11logseq____",logseq____"Belegunglogseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^Blogseq____",1696966393470,536870921]],[logseq____"^15logseq____",[118,logseq____"^;logseq____",logseq____"~u6525a6f9-48a3-41dc-bf0e-4b84633e5d1elogseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Klogseq____",1696966393453,536870921]],[logseq____"^15logseq____",[119,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[119,logseq____"^Ylogseq____",logseq____"grundlagen und diskrete strukturen 1logseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^11logseq____",logseq____"Grundlagen und Diskrete Strukturen 1logseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Blogseq____",1696966393453,536870921]],[logseq____"^15logseq____",[119,logseq____"^;logseq____",logseq____"~u6525a6f9-8d20-4a26-b3e8-ca7d5df25ed4logseq____",536870922]],[logseq____"^15logseq____",[120,logseq____"^Qlogseq____",logseq____"Sind $p$ und $q$ [[Aussagen]], so auch\\n\\\\begin{align}\\n(p\\\\land q) logseq____&\\\\quadlogseq____& (\\logseq____"\\\\text{und}\\logseq____")\\\\\\\\\\n(p\\\\lor q) logseq____&logseq____& (\\logseq____"\\\\text{oder}\\logseq____")\\\\\\\\\\n(\\\\neg p) logseq____&logseq____& (\\logseq____"\\\\text{nicht}\\logseq____")\\\\\\\\\\n(p\\\\rightarrow q) logseq____&logseq____& (\\logseq____"\\\\text{impliziert}\\logseq____")\\\\\\\\\\n(p\\\\leftrightarrow q) logseq____&logseq____& (\\logseq____"\\\\text{genau dann wenn}\\logseq____")\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Flogseq____",123,536870921]],[logseq____"^15logseq____",[120,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[120,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[120,logseq____"^Hlogseq____",112,536870921]],[logseq____"^15logseq____",[120,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[120,logseq____"^;logseq____",logseq____"~u6525a6f9-c025-47b3-ade4-f9ea08f08ee7logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Qlogseq____",logseq____"Formeln $p,q$ [[logisch äquivalent]], wenn sie den gleichen [[Wahrheitswerteverlauf]] haben.\\n[[Schreibweise]]: $p\\\\equiv q$logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Flogseq____",124,536870921]],[logseq____"^15logseq____",[121,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[121,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",100,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",100,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",109,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",117,536870921]],[logseq____"^15logseq____",[121,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[121,logseq____"^;logseq____",logseq____"~u6525a6f9-346b-4c1b-86dc-16481b5fb69dlogseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Qlogseq____",logseq____"[[Wahrheitswerteverlauf]] einer [[Aussageformel]]: Jede mögliche [[Belegung]] wird ein [[Wahrheitswert]] der [[Formel]] zugeordnet (nach [[Tabellenregeln]])logseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Flogseq____",130,536870921]],[logseq____"^15logseq____",[122,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[122,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",100,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",103,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",104,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",111,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",118,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",100,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",103,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",104,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",111,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",114,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",118,536870921]],[logseq____"^15logseq____",[122,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[122,logseq____"^;logseq____",logseq____"~u6525a6f9-0ecd-4fe8-b30a-275bb46df548logseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Qlogseq____",logseq____"## [[Verknüpfung von Aussagen]]logseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Flogseq____",138,536870921]],[logseq____"^15logseq____",[123,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[123,logseq____"^Vlogseq____",133,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[123,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870921]],[logseq____"^15logseq____",[123,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[123,logseq____"^Hlogseq____",116,536870921]],[logseq____"^15logseq____",[123,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[123,logseq____"^;logseq____",logseq____"~u6525a6f9-30bf-499b-8ac1-b3aea0bc18c6logseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Qlogseq____",logseq____"[[Kontradiktion]]: Formel, die konstant $f$ istlogseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Flogseq____",131,536870921]],[logseq____"^15logseq____",[124,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[124,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",107,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[124,logseq____"^Hlogseq____",107,536870921]],[logseq____"^15logseq____",[124,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[124,logseq____"^;logseq____",logseq____"~u6525a6f9-452f-4983-bc9e-6019609bfed5logseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Qlogseq____",logseq____"[[Wikipedia]]logseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Flogseq____",126,536870921]],[logseq____"^15logseq____",[125,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[125,logseq____"^Vlogseq____",127,536870921]],[logseq____"^15logseq____",[125,logseq____"^Ulogseq____",102,536870921]],[logseq____"^15logseq____",[125,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[125,logseq____"^Hlogseq____",102,536870921]],[logseq____"^15logseq____",[125,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[125,logseq____"^;logseq____",logseq____"~u6525a6f9-6f17-41b2-833d-2b74d2c3512flogseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Qlogseq____",logseq____"C. Meinel, M. Mundhenk, [[\\logseq____"Mathematische Grundlagen der Informatik\\logseq____", 5. Auflage 2011]]logseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Flogseq____",127,536870921]],[logseq____"^15logseq____",[126,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[126,logseq____"^Vlogseq____",127,536870921]],[logseq____"^15logseq____",[126,logseq____"^Ulogseq____",105,536870921]],[logseq____"^15logseq____",[126,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[126,logseq____"^Hlogseq____",105,536870921]],[logseq____"^15logseq____",[126,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[126,logseq____"^;logseq____",logseq____"~u6525a6f9-55e0-4382-b6b0-225ff5692efblogseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Qlogseq____",logseq____"# Büchertiplogseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Flogseq____",119,536870921]],[logseq____"^15logseq____",[127,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[127,logseq____"^Vlogseq____",119,536870921]],[logseq____"^15logseq____",[127,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[127,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870921]],[logseq____"^15logseq____",[127,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[127,logseq____"^17logseq____",false,536870921]],[logseq____"^15logseq____",[127,logseq____"^;logseq____",logseq____"~u6525a6f9-3f51-4c09-af95-571dcff654aclogseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Qlogseq____",logseq____"$\\\\text{Weitere Beispiel}$\\n\\\\begin{align}\\n(p\\\\rightarrow q)logseq____&\\\\equiv((\\\\neg q)\\\\rightarrow(\\\\neg p))\\\\\\\\\\n(p\\\\land(p\\\\rightarrow q)) logseq____&\\\\rightarrow q logseq____&\\\\quad \\\\text{Tantologie}\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Flogseq____",137,536870921]],[logseq____"^15logseq____",[128,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[128,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[128,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[128,logseq____"^;logseq____",logseq____"~u6525a6f9-354b-4b71-9677-6b536997ac3blogseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel: Bestimmung des }$[[Wahrheitswerteverlauf]]$\\\\text{ von }(p\\\\rightarrow q)\\\\land(q\\\\rightarrow p)$\\n|$p$|$q$||$p\\\\rightarrow q$|$q\\\\rightarrow p$|$(p\\\\rightarrow q)\\\\land(q\\\\rightarrow p)|$p\\\\leftrightarrow q$|\\n|-|-|-|-|-|-|\\n|f|f||w|w|w|w|\\n|f|w||w|f|f|f|\\n|w|f||f|w|f|f|\\n|w|w||w|w|w|w|logseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Flogseq____",122,536870921]],[logseq____"^15logseq____",[129,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[129,logseq____"^Vlogseq____",122,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",100,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",103,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",104,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",111,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",118,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[129,logseq____"^Hlogseq____",100,536870921]],[logseq____"^15logseq____",[129,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[129,logseq____"^;logseq____",logseq____"~u6525a6f9-854c-40ab-882e-14489865523blogseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Qlogseq____",logseq____"[[Belegung]] (der Variablen): Zuordnung von $w/f$ an jede [[Variable]] einer [[Aussageformel]]logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Flogseq____",135,536870921]],[logseq____"^15logseq____",[130,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[130,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",118,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[130,logseq____"^Hlogseq____",110,536870921]],[logseq____"^15logseq____",[130,logseq____"^Hlogseq____",114,536870921]],[logseq____"^15logseq____",[130,logseq____"^Hlogseq____",118,536870921]],[logseq____"^15logseq____",[130,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[130,logseq____"^;logseq____",logseq____"~u6525a6f9-9090-4b0f-a4b1-46206d2d3343logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Qlogseq____",logseq____"[[Tantologie]]: Formel, die konstant $w$ istlogseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Flogseq____",122,536870921]],[logseq____"^15logseq____",[131,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[131,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",106,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[131,logseq____"^Hlogseq____",106,536870921]],[logseq____"^15logseq____",[131,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[131,logseq____"^;logseq____",logseq____"~u6525a6f9-ad1f-4082-9508-e0e72c98dfaelogseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Qlogseq____",logseq____"Soweit die \\logseq____"[[Syntax]]\\logseq____", jetzt die [[Semantik]]. Die [[Wahrheitswert]]e\\n ergeben sich aus den Wahrheitswerten von $p$,$q$ gemäß folgender Tabelle ([[Tabellenregeln]]).\\n|$p$|$q$||$p\\\\land q$|$p\\\\lor q$|$\\\\neg p$|$p\\\\rightarrow q$|$p\\\\leftrightarrow q$|\\n|---|----||-----------|---------|---------|-----------------|---------------------|\\n|f|f||f|f|w|w|w|\\n|f|w||f|w|w|w|f|\\n|w|f||f|w|f|f|f|\\n|w|w||w|w|f|w|w|logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Flogseq____",136,536870921]],[logseq____"^15logseq____",[132,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[132,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",104,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",108,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",111,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",115,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",104,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",108,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",111,536870921]],[logseq____"^15logseq____",[132,logseq____"^Hlogseq____",115,536870921]],[logseq____"^15logseq____",[132,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[132,logseq____"^;logseq____",logseq____"~u6525a6f9-dd06-4d08-b3c2-732e3bb54373logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Qlogseq____",logseq____"# 1. [[Aussagen]]logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Flogseq____",127,536870921]],[logseq____"^15logseq____",[133,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[133,logseq____"^Vlogseq____",119,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[133,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870921]],[logseq____"^15logseq____",[133,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[133,logseq____"^Hlogseq____",112,536870921]],[logseq____"^15logseq____",[133,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[133,logseq____"^;logseq____",logseq____"~u6525a6f9-a3d4-449e-8cab-939771db6651logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Qlogseq____",logseq____"[[Aussagenlogische variable]]: [[Variable]], die den Wert $w$ oder $f$ annimmtlogseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Flogseq____",132,536870921]],[logseq____"^15logseq____",[134,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[134,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",101,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",101,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",110,536870921]],[logseq____"^15logseq____",[134,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[134,logseq____"^;logseq____",logseq____"~u6525a6f9-bb11-4c0f-8fae-3894d03e9bf6logseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Qlogseq____",logseq____"[[Aussageformel]]: Entsteht durch sukzessive [[Verknüpfungen]] wie oben an Variablen ergibt #FIXMElogseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Flogseq____",134,536870921]],[logseq____"^15logseq____",[135,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[135,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",37,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",113,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[135,logseq____"^Hlogseq____",37,536870921]],[logseq____"^15logseq____",[135,logseq____"^Hlogseq____",113,536870921]],[logseq____"^15logseq____",[135,logseq____"^Hlogseq____",114,536870921]],[logseq____"^15logseq____",[135,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[135,logseq____"^;logseq____",logseq____"~u6525a6f9-34d8-4e98-8495-6de4a2b03fd6logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\np\\\\land q\\\\lor r\\\\\\\\\\n(p\\\\land q)\\\\lor r\\\\\\\\\\np\\\\land (q\\\\lor r)\\\\\\\\\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Flogseq____",120,536870921]],[logseq____"^15logseq____",[136,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[136,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[136,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[136,logseq____"^;logseq____",logseq____"~u6525a6f9-4299-4780-8b5e-bae473508e5elogseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Qlogseq____",logseq____"Alternativ: $p\\\\equiv q$, falls $p\\\\leftrightarrow q$ [[Tantologie]]logseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Flogseq____",121,536870921]],[logseq____"^15logseq____",[137,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[137,logseq____"^Vlogseq____",123,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",106,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[137,logseq____"^Hlogseq____",106,536870921]],[logseq____"^15logseq____",[137,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[137,logseq____"^;logseq____",logseq____"~u6525a6f9-3e26-40cc-94cc-67adc0c21881logseq____",536870921]],[logseq____"^15logseq____",[138,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\nlogseq____&\\logseq____"5\\\\text{ ist prim}\\logseq____" logseq____&\\\\quadlogseq____& (w)\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"4\\\\text{ ist prim}\\logseq____" logseq____&logseq____& (f)\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Jede gerade Zahl }\\\\ge4\\\\notag\\\\\\\\\\nlogseq____&\\\\text{ ist Summe zweier Primzahlen}\\logseq____" logseq____&logseq____& (\\\\text{Aussage, }w\\\\text{ oder }f)\\\\notag\\\\\\\\\\nlogseq____&(\\\\text{Vermutung von Goldback 1742})\\\\text{, }logseq____&logseq____&\\\\text{richtig für gerade Zahlen bis }4*10^{18}\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Dieser Satz ist falsch}\\logseq____" logseq____&logseq____& (\\\\text{keine Aussage})\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Die Gleichung } x^2+y^2=z^2 \\\\notag\\\\\\\\\\nlogseq____&\\\\text{ hat eine Lösung }x,y,z\\\\notag\\\\\\\\\\nlogseq____&\\\\text{ aus positiven ganzen Zahlen}\\logseq____" logseq____&logseq____& (w\\\\text{, z.B. }x=3,y=4,z=5)\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Für }n\\\\ge3\\\\text{ hat die Gleichung }\\\\notag\\\\\\\\\\nlogseq____&x^n+y^n=z^n\\\\text{ eine Lösung}logseq____&logseq____& (f\\\\text{, wie von Fermat 1640 vermutet}\\\\notag\\\\\\\\\\nlogseq____&x,y,z \\\\text{aus positiven ganzen Zahlen}\\logseq____" logseq____&logseq____&\\\\text{und von Wiles 1994 bewiesen})\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Gott ist tot}\\logseq____" logseq____&logseq____& (\\\\text{Aussage? Wohl kaum?})\\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Nietzsche ist tot}\\logseq____" logseq____&logseq____& (\\\\text{Aussage?}) \\\\\\\\\\n\\\\notag\\\\\\\\\\nlogseq____&\\logseq____"\\\\text{Die Länder einer Landkarte lassen sich}\\\\notag\\\\\\\\\\nlogseq____&\\\\text{so mit nur vier Farben färben,}\\\\notag\\\\\\\\\\nlogseq____&\\\\text{dass Länder mit einer gemeinsamen}\\\\notag\\\\\\\\\\nlogseq____&\\\\text{Grenzlienie verschieden gefärbt sind.}\\logseq____" logseq____&logseq____& (\\\\text{Aussagge; }w\\\\text{, sog 4-Farben-Satz})\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[138,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[138,logseq____"^Flogseq____",139,536870921]],[logseq____"^15logseq____",[138,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[138,logseq____"^Vlogseq____",133,536870921]],[logseq____"^15logseq____",[138,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[138,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[138,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[138,logseq____"^;logseq____",logseq____"~u6525a6f9-4e69-4a26-bda2-63564f0c1c07logseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Qlogseq____",logseq____"Satz, der wahr oder falsch ist, d.h. der [[Wahrheitswert]] $w$ bzw $f$ hat ($t/f$, $1/0$, $\\\\text{wahr}/\\\\text{falsch}$)logseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Flogseq____",133,536870921]],[logseq____"^15logseq____",[139,logseq____"^Xlogseq____",119,536870921]],[logseq____"^15logseq____",[139,logseq____"^Vlogseq____",133,536870921]],[logseq____"^15logseq____",[139,logseq____"^Ulogseq____",104,536870921]],[logseq____"^15logseq____",[139,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[139,logseq____"^Ulogseq____",119,536870921]],[logseq____"^15logseq____",[139,logseq____"^Hlogseq____",104,536870921]],[logseq____"^15logseq____",[139,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[139,logseq____"^;logseq____",logseq____"~u6525a6f9-9b2f-421d-9c71-8054ab3f577elogseq____",536870921]],[logseq____"^15logseq____",[141,logseq____"^Klogseq____",1696966393593,536870922]],[logseq____"^15logseq____",[141,logseq____"^@logseq____",false,536870922]],[logseq____"^15logseq____",[141,logseq____"^Ylogseq____",logseq____"grundlagen und diskrete strukturenlogseq____",536870922]],[logseq____"^15logseq____",[141,logseq____"^11logseq____",logseq____"Grundlagen und Diskrete Strukturenlogseq____",536870922]],[logseq____"^15logseq____",[141,logseq____"^Blogseq____",1696966393593,536870922]],[logseq____"^15logseq____",[141,logseq____"^;logseq____",logseq____"~u6525a6f9-39bc-472d-ae18-1d75a74ebff4logseq____",536870927]],[logseq____"^15logseq____",[142,logseq____"^Qlogseq____",logseq____"[[Grundlagen und Diskrete Strukturen 1]]logseq____",536870922]],[logseq____"^15logseq____",[142,logseq____"^Ologseq____",logseq____"^16logseq____",536870922]],[logseq____"^15logseq____",[142,logseq____"^Flogseq____",141,536870922]],[logseq____"^15logseq____",[142,logseq____"^Xlogseq____",141,536870922]],[logseq____"^15logseq____",[142,logseq____"^Vlogseq____",141,536870922]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",119,536870922]],[logseq____"^15logseq____",[142,logseq____"^Ulogseq____",141,536870922]],[logseq____"^15logseq____",[142,logseq____"^Hlogseq____",119,536870922]],[logseq____"^15logseq____",[142,logseq____"^17logseq____",true,536870922]],[logseq____"^15logseq____",[142,logseq____"^;logseq____",logseq____"~u6525a6f9-4be8-4313-b4bc-6c58246645b3logseq____",536870922]],[logseq____"^15logseq____",[144,logseq____"^Klogseq____",1696966393615,536870923]],[logseq____"^15logseq____",[144,logseq____"^@logseq____",false,536870923]],[logseq____"^15logseq____",[144,logseq____"^Ylogseq____",logseq____"logarithmusgesetzelogseq____",536870923]],[logseq____"^15logseq____",[144,logseq____"^11logseq____",logseq____"Logarithmusgesetzelogseq____",536870923]],[logseq____"^15logseq____",[144,logseq____"^Blogseq____",1696966393615,536870923]],[logseq____"^15logseq____",[144,logseq____"^;logseq____",logseq____"~u6525a6f9-76b7-4841-a98a-0f6ce6999dfclogseq____",536870923]],[logseq____"^15logseq____",[145,logseq____"^Qlogseq____",logseq____"[[Logarithmusgesetze]]logseq____",536870923]],[logseq____"^15logseq____",[145,logseq____"^Ologseq____",logseq____"^16logseq____",536870923]],[logseq____"^15logseq____",[145,logseq____"^Flogseq____",27,536870923]],[logseq____"^15logseq____",[145,logseq____"^Xlogseq____",27,536870923]],[logseq____"^15logseq____",[145,logseq____"^Vlogseq____",27,536870923]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",27,536870923]],[logseq____"^15logseq____",[145,logseq____"^Ulogseq____",144,536870923]],[logseq____"^15logseq____",[145,logseq____"^Hlogseq____",144,536870923]],[logseq____"^15logseq____",[145,logseq____"^17logseq____",true,536870923]],[logseq____"^15logseq____",[145,logseq____"^;logseq____",logseq____"~u6525a6f9-e540-4195-87b8-6d5b635fffdalogseq____",536870923]],[logseq____"^15logseq____",[146,logseq____"^Qlogseq____",logseq____"logseq____",536870923]],[logseq____"^15logseq____",[146,logseq____"^Ologseq____",logseq____"^16logseq____",536870923]],[logseq____"^15logseq____",[146,logseq____"^Flogseq____",145,536870923]],[logseq____"^15logseq____",[146,logseq____"^Xlogseq____",27,536870923]],[logseq____"^15logseq____",[146,logseq____"^Vlogseq____",27,536870923]],[logseq____"^15logseq____",[146,logseq____"^Ulogseq____",27,536870923]],[logseq____"^15logseq____",[146,logseq____"^17logseq____",true,536870923]],[logseq____"^15logseq____",[146,logseq____"^;logseq____",logseq____"~u6525a6f9-e147-458c-8cdc-76165936a4balogseq____",536870923]],[logseq____"^15logseq____",[159,logseq____"^Klogseq____",1696966393694,536870926]],[logseq____"^15logseq____",[159,logseq____"^@logseq____",false,536870926]],[logseq____"^15logseq____",[159,logseq____"^Ylogseq____",logseq____"programmierung und algorithmenlogseq____",536870926]],[logseq____"^15logseq____",[159,logseq____"^11logseq____",logseq____"Programmierung und Algorithmenlogseq____",536870926]],[logseq____"^15logseq____",[159,logseq____"^Blogseq____",1696966393694,536870926]],[logseq____"^15logseq____",[159,logseq____"^;logseq____",logseq____"~u6525a6f9-3005-4ffc-b1ef-0309b3c37946logseq____",536870927]],[logseq____"^15logseq____",[160,logseq____"^Klogseq____",1696966393694,536870926]],[logseq____"^15logseq____",[160,logseq____"^@logseq____",false,536870926]],[logseq____"^15logseq____",[160,logseq____"^Ylogseq____",logseq____"programmierung und algorithmen 1logseq____",536870926]],[logseq____"^15logseq____",[160,logseq____"^11logseq____",logseq____"Programmierung und Algorithmen 1logseq____",536870926]],[logseq____"^15logseq____",[160,logseq____"^Blogseq____",1696966393694,536870926]],[logseq____"^15logseq____",[160,logseq____"^;logseq____",logseq____"~u6525a6f9-4bae-4e23-b9d9-82814b966e66logseq____",536870926]],[logseq____"^15logseq____",[161,logseq____"^Qlogseq____",logseq____"[[Programmierung und Algorithmen 1]]logseq____",536870926]],[logseq____"^15logseq____",[161,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[161,logseq____"^Flogseq____",159,536870926]],[logseq____"^15logseq____",[161,logseq____"^Xlogseq____",159,536870926]],[logseq____"^15logseq____",[161,logseq____"^Vlogseq____",159,536870926]],[logseq____"^15logseq____",[161,logseq____"^Ulogseq____",159,536870926]],[logseq____"^15logseq____",[161,logseq____"^Ulogseq____",160,536870926]],[logseq____"^15logseq____",[161,logseq____"^Hlogseq____",160,536870926]],[logseq____"^15logseq____",[161,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[161,logseq____"^;logseq____",logseq____"~u6525a6f9-d647-43ef-a18f-d2cef4f34fdalogseq____",536870926]],[logseq____"^15logseq____",[162,logseq____"^Qlogseq____",logseq____"# Informationenlogseq____",536870926]],[logseq____"^15logseq____",[162,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[162,logseq____"^Flogseq____",161,536870926]],[logseq____"^15logseq____",[162,logseq____"^Xlogseq____",159,536870926]],[logseq____"^15logseq____",[162,logseq____"^Vlogseq____",159,536870926]],[logseq____"^15logseq____",[162,logseq____"^Ulogseq____",159,536870926]],[logseq____"^15logseq____",[162,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870926]],[logseq____"^15logseq____",[162,logseq____"^Jlogseq____",[],536870926]],[logseq____"^15logseq____",[162,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[162,logseq____"^;logseq____",logseq____"~u6525a6f9-47e9-4cec-9a88-2816cc119c29logseq____",536870926]],[logseq____"^15logseq____",[163,logseq____"^Qlogseq____",logseq____"Bestehquote: 40%logseq____",536870926]],[logseq____"^15logseq____",[163,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[163,logseq____"^Flogseq____",162,536870926]],[logseq____"^15logseq____",[163,logseq____"^Xlogseq____",159,536870926]],[logseq____"^15logseq____",[163,logseq____"^Vlogseq____",162,536870926]],[logseq____"^15logseq____",[163,logseq____"^Ulogseq____",159,536870926]],[logseq____"^15logseq____",[163,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[163,logseq____"^;logseq____",logseq____"~u6525a6f9-e07d-4463-a1ad-755a31a83f47logseq____",536870926]],[logseq____"^15logseq____",[164,logseq____"^Qlogseq____",logseq____"## Bonuspunktelogseq____",536870926]],[logseq____"^15logseq____",[164,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[164,logseq____"^Flogseq____",163,536870926]],[logseq____"^15logseq____",[164,logseq____"^Xlogseq____",159,536870926]],[logseq____"^15logseq____",[164,logseq____"^Vlogseq____",162,536870926]],[logseq____"^15logseq____",[164,logseq____"^Ulogseq____",159,536870926]],[logseq____"^15logseq____",[164,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870926]],[logseq____"^15logseq____",[164,logseq____"^Jlogseq____",[],536870926]],[logseq____"^15logseq____",[164,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[164,logseq____"^;logseq____",logseq____"~u6525a6f9-d647-43a0-ae18-290f1be148dclogseq____",536870926]],[logseq____"^15logseq____",[165,logseq____"^Qlogseq____",logseq____"Übungsblätter abgebenlogseq____",536870926]],[logseq____"^15logseq____",[165,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[165,logseq____"^Flogseq____",164,536870926]],[logseq____"^15logseq____",[165,logseq____"^Xlogseq____",159,536870926]],[logseq____"^15logseq____",[165,logseq____"^Vlogseq____",164,536870926]],[logseq____"^15logseq____",[165,logseq____"^Ulogseq____",159,536870926]],[logseq____"^15logseq____",[165,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[165,logseq____"^;logseq____",logseq____"~u6525a6f9-8d46-4654-80b5-5b11d571b477logseq____",536870926]],[logseq____"^15logseq____",[166,logseq____"^Qlogseq____",logseq____"Übungsprüfungenlogseq____",536870926]],[logseq____"^15logseq____",[166,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[166,logseq____"^Flogseq____",165,536870926]],[logseq____"^15logseq____",[166,logseq____"^Xlogseq____",159,536870926]],[logseq____"^15logseq____",[166,logseq____"^Vlogseq____",164,536870926]],[logseq____"^15logseq____",[166,logseq____"^Ulogseq____",159,536870926]],[logseq____"^15logseq____",[166,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[166,logseq____"^;logseq____",logseq____"~u6525a6f9-bb9d-4b6b-8b5a-c6954f422c8elogseq____",536870926]],[logseq____"^15logseq____",[168,logseq____"^Klogseq____",1696966393722,536870927]],[logseq____"^15logseq____",[168,logseq____"^@logseq____",false,536870927]],[logseq____"^15logseq____",[168,logseq____"^Ylogseq____",logseq____"vorlesungs notizenlogseq____",536870927]],[logseq____"^15logseq____",[168,logseq____"^11logseq____",logseq____"Vorlesungs Notizenlogseq____",536870927]],[logseq____"^15logseq____",[168,logseq____"^Blogseq____",1696966393722,536870927]],[logseq____"^15logseq____",[168,logseq____"^;logseq____",logseq____"~u6525a6f9-d0d7-4fa3-8554-d0d55a9c6d9alogseq____",536870927]],[logseq____"^15logseq____",[169,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe]]logseq____",536870927]],[logseq____"^15logseq____",[169,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[169,logseq____"^Flogseq____",168,536870927]],[logseq____"^15logseq____",[169,logseq____"^Xlogseq____",168,536870927]],[logseq____"^15logseq____",[169,logseq____"^Vlogseq____",168,536870927]],[logseq____"^15logseq____",[169,logseq____"^Ulogseq____",94,536870927]],[logseq____"^15logseq____",[169,logseq____"^Ulogseq____",168,536870927]],[logseq____"^15logseq____",[169,logseq____"^Hlogseq____",94,536870927]],[logseq____"^15logseq____",[169,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[169,logseq____"^;logseq____",logseq____"~u6525a6f9-86cb-45e1-b435-6cc3dd38af66logseq____",536870927]],[logseq____"^15logseq____",[170,logseq____"^Qlogseq____",logseq____"[[Mathe 1]]logseq____",536870927]],[logseq____"^15logseq____",[170,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[170,logseq____"^Flogseq____",169,536870927]],[logseq____"^15logseq____",[170,logseq____"^Xlogseq____",168,536870927]],[logseq____"^15logseq____",[170,logseq____"^Vlogseq____",168,536870927]],[logseq____"^15logseq____",[170,logseq____"^Ulogseq____",148,536870927]],[logseq____"^15logseq____",[170,logseq____"^Ulogseq____",168,536870927]],[logseq____"^15logseq____",[170,logseq____"^Hlogseq____",148,536870927]],[logseq____"^15logseq____",[170,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[170,logseq____"^;logseq____",logseq____"~u6525a6f9-ed0a-4903-99a6-f7d58823d4f4logseq____",536870927]],[logseq____"^15logseq____",[171,logseq____"^Qlogseq____",logseq____"[[Grundlagen und Diskrete Strukturen]]logseq____",536870927]],[logseq____"^15logseq____",[171,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[171,logseq____"^Flogseq____",170,536870927]],[logseq____"^15logseq____",[171,logseq____"^Xlogseq____",168,536870927]],[logseq____"^15logseq____",[171,logseq____"^Vlogseq____",168,536870927]],[logseq____"^15logseq____",[171,logseq____"^Ulogseq____",141,536870927]],[logseq____"^15logseq____",[171,logseq____"^Ulogseq____",168,536870927]],[logseq____"^15logseq____",[171,logseq____"^Hlogseq____",141,536870927]],[logseq____"^15logseq____",[171,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[171,logseq____"^;logseq____",logseq____"~u6525a6f9-915f-4671-ab54-5b8fc3002ba5logseq____",536870927]],[logseq____"^15logseq____",[172,logseq____"^Qlogseq____",logseq____"[[Programmierung und Algorithmen]]logseq____",536870927]],[logseq____"^15logseq____",[172,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[172,logseq____"^Flogseq____",171,536870927]],[logseq____"^15logseq____",[172,logseq____"^Xlogseq____",168,536870927]],[logseq____"^15logseq____",[172,logseq____"^Vlogseq____",168,536870927]],[logseq____"^15logseq____",[172,logseq____"^Ulogseq____",159,536870927]],[logseq____"^15logseq____",[172,logseq____"^Ulogseq____",168,536870927]],[logseq____"^15logseq____",[172,logseq____"^Hlogseq____",159,536870927]],[logseq____"^15logseq____",[172,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[172,logseq____"^;logseq____",logseq____"~u6525a6f9-35de-4e43-9c35-e36146807fc8logseq____",536870927]]]]]]"</script>
|
|
<script>window.logseq_state="{:ui/theme \"dark\", :config {\"local\" {:shortcuts {}, :default-templates {:journals \"\"}, :feature/enable-journals? false, :query/views {:pprint (fn [r] [:pre.code (pprint r)])}, :editor/preferred-pasting-file? true, :macros {}, :shortcut/doc-mode-enter-for-new-block? false, :favorites [], :ui/show-empty-bullets? false, :file/name-format :triple-lowbar, :preferred-workflow :now, :publishing/all-pages-public? true, :ref/default-open-blocks-level 2, :feature/enable-block-timestamps? false, :start-of-week 6, :ref/linked-references-collapsed-threshold 50, :outliner/block-title-collapse-enabled? false, :commands [], :ui/show-full-blocks? false, :meta/version 1, :hidden [], :default-queries {:journals [{:title \"🔨 NOW\", :query [:find (pull ?h [*]) :in $ ?start ?today :where [?h :block/marker ?marker] [(contains? #{\"NOW\" \"DOING\"} ?marker)] [?h :block/page ?p] [?p :block/journal? true] [?p :block/journal-day ?d] [(>= ?d ?start)] [(<= ?d ?today)]], :inputs [:14d :today], :result-transform (fn [result] (sort-by (fn [h] (get h :block/priority \"Z\")) result)), :group-by-page? false, :collapsed? false} {:title \"📅 NEXT\", :query [:find (pull ?h [*]) :in $ ?start ?next :where [?h :block/marker ?marker] [(contains? #{\"NOW\" \"LATER\" \"TODO\"} ?marker)] [?h :block/page ?p] [?p :block/journal? true] [?p :block/journal-day ?d] [(> ?d ?start)] [(< ?d ?next)]], :inputs [:today :7d-after], :group-by-page? false, :collapsed? false}]}, :ui/auto-expand-block-refs? true, :ui/enable-tooltip? true, :query/result-transforms {:sort-by-priority (fn [result] (sort-by (fn [h] (get h :block/priority \"Z\")) result))}, :property-pages/enabled? true, :block/content-max-length 10000, :ui/show-command-doc? true, :feature/enable-search-remove-accents? true, :default-home {:page \"Vorlesungs Notizen\"}}}}"</script>
|
|
<script type="text/javascript">// Single Page Apps for GitHub Pages
|
|
// https://github.com/rafgraph/spa-github-pages
|
|
// Copyright (c) 2016 Rafael Pedicini, licensed under the MIT License
|
|
// ----------------------------------------------------------------------
|
|
// This script checks to see if a redirect is present in the query string
|
|
// and converts it back into the correct url and adds it to the
|
|
// browser's history using window.history.replaceState(...),
|
|
// which won't cause the browser to attempt to load the new url.
|
|
// When the single page app is loaded further down in this file,
|
|
// the correct url will be waiting in the browser's history for
|
|
// the single page app to route accordingly.
|
|
(function(l) {
|
|
if (l.search) {
|
|
var q = {};
|
|
l.search.slice(1).split('&').forEach(function(v) {
|
|
var a = v.split('=');
|
|
q[a[0]] = a.slice(1).join('=').replace(/~and~/g, '&');
|
|
});
|
|
if (q.p !== undefined) {
|
|
window.history.replaceState(null, null,
|
|
l.pathname.slice(0, -1) + (q.p || '') +
|
|
(q.q ? ('?' + q.q) : '') +
|
|
l.hash
|
|
);
|
|
}
|
|
}
|
|
}(window.location))</script>
|
|
<script src="static/js/main.js"></script>
|
|
<script src="static/js/interact.min.js"></script>
|
|
<script src="static/js/highlight.min.js"></script>
|
|
<script src="static/js/katex.min.js"></script>
|
|
<script src="static/js/html2canvas.min.js"></script>
|
|
<script src="static/js/code-editor.js"></script>
|
|
<script src="static/js/custom.js"></script>
|
|
</body>
|