62 lines
164 KiB
HTML
62 lines
164 KiB
HTML
<!DOCTYPE html>
|
|
<head><meta charset="utf-8"></meta>
|
|
<meta content="minimum-scale=1, initial-scale=1, width=device-width, shrink-to-fit=no" name="viewport"></meta>
|
|
<link type="text/css" href="static/css/tabler-icons.min.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/style.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/custom.css" rel="stylesheet"></link>
|
|
<link type="text/css" href="static/css/export.css" rel="stylesheet"></link>
|
|
<link href="static/img/logo.png" type="image/png" rel="shortcut icon"></link>
|
|
<link href="static/img/logo.png" sizes="192x192" rel="shortcut icon"></link>
|
|
<link href="static/img/logo.png" rel="apple-touch-icon"></link>
|
|
<meta name="apple-mobile-web-app-title"></meta>
|
|
<meta name="apple-mobile-web-app-capable" content="yes"></meta>
|
|
<meta name="apple-touch-fullscreen" content="yes"></meta>
|
|
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent"></meta>
|
|
<meta name="mobile-web-app-capable" content="yes"></meta>
|
|
<meta property="og:title"></meta>
|
|
<meta content="site" property="og:type"></meta>
|
|
<meta content="static/img/logo.png" property="og:image"></meta>
|
|
<meta property="og:description"></meta>
|
|
<title></title>
|
|
<meta property="og:site_name"></meta>
|
|
<meta></meta>
|
|
</head>
|
|
<body><div id="root"></div>
|
|
<script>window.logseq_db="[logseq____"~#datascript/DBlogseq____",[logseq____"^ logseq____",logseq____"~:schemalogseq____",[logseq____"^ logseq____",logseq____"~:ast/versionlogseq____",[logseq____"^ logseq____"],logseq____"~:file/contentlogseq____",[logseq____"^ logseq____"],logseq____"~:block/properties-text-valueslogseq____",[logseq____"^ logseq____"],logseq____"~:block/aliaslogseq____",[logseq____"^ logseq____",logseq____"~:db/valueTypelogseq____",logseq____"~:db.type/reflogseq____",logseq____"~:db/cardinalitylogseq____",logseq____"~:db.cardinality/manylogseq____"],logseq____"~:block/pre-block?logseq____",[logseq____"^ logseq____"],logseq____"~:block/uuidlogseq____",[logseq____"^ logseq____",logseq____"~:db/uniquelogseq____",logseq____"~:db.unique/identitylogseq____"],logseq____"~:block/prioritylogseq____",[logseq____"^ logseq____"],logseq____"~:block/propertieslogseq____",[logseq____"^ logseq____"],logseq____"~:block/journal?logseq____",[logseq____"^ logseq____"],logseq____"~:block/namespacelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____"],logseq____"~:block/updated-atlogseq____",[logseq____"^ logseq____"],logseq____"~:block/repeated?logseq____",[logseq____"^ logseq____"],logseq____"~:db/typelogseq____",[logseq____"^ logseq____"],logseq____"~:file/handlelogseq____",[logseq____"^ logseq____"],logseq____"~:block/leftlogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"~:db/indexlogseq____",true],logseq____"~:block/refslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/scheduledlogseq____",[logseq____"^ logseq____"],logseq____"~:block/properties-orderlogseq____",[logseq____"^ logseq____"],logseq____"~:block/created-atlogseq____",[logseq____"^ logseq____"],logseq____"~:block/deadlinelogseq____",[logseq____"^ logseq____"],logseq____"~:block/collapsed?logseq____",[logseq____"^ logseq____",logseq____"^Glogseq____",true],logseq____"~:block/journal-daylogseq____",[logseq____"^ logseq____"],logseq____"~:block/formatlogseq____",[logseq____"^ logseq____"],logseq____"~:block/tagslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/contentlogseq____",[logseq____"^ logseq____"],logseq____"~:recent/pageslogseq____",[logseq____"^ logseq____"],logseq____"~:block/macroslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:db/identlogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:block/path-refslogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^8logseq____",logseq____"^9logseq____"],logseq____"~:block/parentlogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^Glogseq____",true],logseq____"~:block/typelogseq____",[logseq____"^ logseq____"],logseq____"~:block/pagelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____",logseq____"^Glogseq____",true],logseq____"~:block/namelogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:file/pathlogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:block/filelogseq____",[logseq____"^ logseq____",logseq____"^6logseq____",logseq____"^7logseq____"],logseq____"~:block/markerlogseq____",[logseq____"^ logseq____"],logseq____"~:block/original-namelogseq____",[logseq____"^ logseq____",logseq____"^logseq____<logseq____",logseq____"^=logseq____"],logseq____"~:schema/versionlogseq____",[logseq____"^ logseq____"]],logseq____"~:datomslogseq____",[logseq____"~#listlogseq____",[[logseq____"~#datascript/Datomlogseq____",[1,logseq____"^12logseq____",2,536870913]],[logseq____"^15logseq____",[2,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[2,logseq____"^Ylogseq____",logseq____"cardlogseq____",536870913]],[logseq____"^15logseq____",[2,logseq____"^11logseq____",logseq____"cardlogseq____",536870913]],[logseq____"^15logseq____",[2,logseq____"^;logseq____",logseq____"~u00ffd265-0baf-4fcd-adc8-c2142c6aecd1logseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[3,logseq____"^Ylogseq____",logseq____"canceledlogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^11logseq____",logseq____"CANCELEDlogseq____",536870914]],[logseq____"^15logseq____",[3,logseq____"^;logseq____",logseq____"~u76bca379-6bbf-41e0-8b8c-78ca88e05a78logseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[4,logseq____"^Ylogseq____",logseq____"todologseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^11logseq____",logseq____"TODOlogseq____",536870914]],[logseq____"^15logseq____",[4,logseq____"^;logseq____",logseq____"~u3be2619e-5894-48a8-84ce-1c5dfc083b1alogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[5,logseq____"^Ylogseq____",logseq____"nowlogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^11logseq____",logseq____"NOWlogseq____",536870914]],[logseq____"^15logseq____",[5,logseq____"^;logseq____",logseq____"~u421ea864-78db-4b0b-84f4-4aa9250ecf26logseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[6,logseq____"^Ylogseq____",logseq____"laterlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^11logseq____",logseq____"LATERlogseq____",536870914]],[logseq____"^15logseq____",[6,logseq____"^;logseq____",logseq____"~ubc330898-46d6-42ee-ba50-326700b46eeelogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[7,logseq____"^Ylogseq____",logseq____"donelogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^11logseq____",logseq____"DONElogseq____",536870914]],[logseq____"^15logseq____",[7,logseq____"^;logseq____",logseq____"~u36c77111-1fce-4a57-99e1-bed51a7987d9logseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[8,logseq____"^Ylogseq____",logseq____"doinglogseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^11logseq____",logseq____"DOINGlogseq____",536870914]],[logseq____"^15logseq____",[8,logseq____"^;logseq____",logseq____"~uf2430da9-7982-4675-955f-8402e3d9e890logseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[9,logseq____"^Ylogseq____",logseq____"in-progresslogseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^11logseq____",logseq____"IN-PROGRESSlogseq____",536870914]],[logseq____"^15logseq____",[9,logseq____"^;logseq____",logseq____"~ubf167df8-ec91-4504-bf57-d84d3058ebb4logseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[10,logseq____"^Ylogseq____",logseq____"clogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^11logseq____",logseq____"Clogseq____",536870914]],[logseq____"^15logseq____",[10,logseq____"^;logseq____",logseq____"~u93f1e5f1-144b-4901-9105-87e57dbd1899logseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[11,logseq____"^Ylogseq____",logseq____"blogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^11logseq____",logseq____"Blogseq____",536870914]],[logseq____"^15logseq____",[11,logseq____"^;logseq____",logseq____"~u4bbbfd2d-683a-4000-ad78-4af072f707dclogseq____",536870914]],[logseq____"^15logseq____",[12,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[12,logseq____"^Ylogseq____",logseq____"contentslogseq____",536870914]],[logseq____"^15logseq____",[12,logseq____"^11logseq____",logseq____"contentslogseq____",536870917]],[logseq____"^15logseq____",[12,logseq____"^;logseq____",logseq____"~u6525a066-ac6e-4b77-8e4f-9314afed4890logseq____",536870917]],[logseq____"^15logseq____",[13,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[13,logseq____"^Ylogseq____",logseq____"waitinglogseq____",536870914]],[logseq____"^15logseq____",[13,logseq____"^11logseq____",logseq____"WAITINGlogseq____",536870914]],[logseq____"^15logseq____",[13,logseq____"^;logseq____",logseq____"~u12bf1101-4953-48e1-98e8-157fa25ddfaclogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[14,logseq____"^Ylogseq____",logseq____"favoriteslogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^11logseq____",logseq____"Favoriteslogseq____",536870914]],[logseq____"^15logseq____",[14,logseq____"^;logseq____",logseq____"~uc85ac206-aa6a-469a-8bfc-accad279ec3clogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[15,logseq____"^Ylogseq____",logseq____"alogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^11logseq____",logseq____"Alogseq____",536870914]],[logseq____"^15logseq____",[15,logseq____"^;logseq____",logseq____"~u0dd92a5a-60aa-4b27-b8cb-a6ee22385854logseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[16,logseq____"^Ylogseq____",logseq____"cancelledlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^11logseq____",logseq____"CANCELLEDlogseq____",536870914]],[logseq____"^15logseq____",[16,logseq____"^;logseq____",logseq____"~u171259eb-8da6-4238-9855-ae08c8905b23logseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^@logseq____",false,536870914]],[logseq____"^15logseq____",[17,logseq____"^Ylogseq____",logseq____"waitlogseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^11logseq____",logseq____"WAITlogseq____",536870914]],[logseq____"^15logseq____",[17,logseq____"^;logseq____",logseq____"~ub65d1257-4678-42f1-b429-54d3c285ba2flogseq____",536870914]],[logseq____"^15logseq____",[21,logseq____"^Qlogseq____",logseq____"logseq____",536870917]],[logseq____"^15logseq____",[21,logseq____"^Ologseq____",logseq____"~:markdownlogseq____",536870917]],[logseq____"^15logseq____",[21,logseq____"^Flogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Xlogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Vlogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"^Ulogseq____",12,536870917]],[logseq____"^15logseq____",[21,logseq____"~:block/unorderedlogseq____",true,536870917]],[logseq____"^15logseq____",[21,logseq____"^;logseq____",logseq____"~u6525a066-5718-4220-bfd1-47be863a8bb1logseq____",536870917]],[logseq____"^15logseq____",[23,logseq____"^Klogseq____",1696964710965,536870918]],[logseq____"^15logseq____",[23,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[23,logseq____"^Ylogseq____",logseq____"quadratische ergänzunglogseq____",536870918]],[logseq____"^15logseq____",[23,logseq____"^11logseq____",logseq____"Quadratische Ergänzunglogseq____",536870918]],[logseq____"^15logseq____",[23,logseq____"^Blogseq____",1696964710965,536870918]],[logseq____"^15logseq____",[23,logseq____"^;logseq____",logseq____"~u6525a066-c3bd-41f5-85e2-268d9b8522c0logseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^Klogseq____",1696964710959,536870918]],[logseq____"^15logseq____",[24,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[24,logseq____"^Ylogseq____",logseq____"potenzenlogseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^11logseq____",logseq____"Potenzenlogseq____",536870918]],[logseq____"^15logseq____",[24,logseq____"^Blogseq____",1696964710959,536870918]],[logseq____"^15logseq____",[24,logseq____"^;logseq____",logseq____"~u6525a066-ed37-4a76-a14d-f8df7a999093logseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^Klogseq____",1696964710956,536870918]],[logseq____"^15logseq____",[25,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[25,logseq____"^Ylogseq____",logseq____"pascalsches dreiecklogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^11logseq____",logseq____"Pascalsches Dreiecklogseq____",536870918]],[logseq____"^15logseq____",[25,logseq____"^Blogseq____",1696964710956,536870918]],[logseq____"^15logseq____",[25,logseq____"^;logseq____",logseq____"~u6525a066-b7f8-4f80-8b35-5e6294895896logseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^Klogseq____",1696964710963,536870918]],[logseq____"^15logseq____",[26,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[26,logseq____"^Ylogseq____",logseq____"quadratische gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^11logseq____",logseq____"Quadratische Gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[26,logseq____"^Blogseq____",1696964710963,536870918]],[logseq____"^15logseq____",[26,logseq____"^;logseq____",logseq____"~u6525a066-9ffb-4138-8567-deab034c1a60logseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^Klogseq____",1696964710950,536870918]],[logseq____"^15logseq____",[27,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[27,logseq____"^Ylogseq____",logseq____"logarithmenlogseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^11logseq____",logseq____"Logarithmenlogseq____",536870918]],[logseq____"^15logseq____",[27,logseq____"^Blogseq____",1696964710950,536870918]],[logseq____"^15logseq____",[27,logseq____"^;logseq____",logseq____"~u6525a067-eef2-4fb7-b632-7a8252803110logseq____",536870923]],[logseq____"^15logseq____",[28,logseq____"^Klogseq____",1696964710958,536870918]],[logseq____"^15logseq____",[28,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[28,logseq____"^Ylogseq____",logseq____"binomialkoeffizientlogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^11logseq____",logseq____"Binomialkoeffizientlogseq____",536870918]],[logseq____"^15logseq____",[28,logseq____"^Blogseq____",1696964710958,536870918]],[logseq____"^15logseq____",[28,logseq____"^;logseq____",logseq____"~u6525a066-7102-48ad-9134-35e1d8ad4c22logseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^Klogseq____",1696964710949,536870918]],[logseq____"^15logseq____",[29,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[29,logseq____"^Ylogseq____",logseq____"gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^11logseq____",logseq____"Gleichungenlogseq____",536870918]],[logseq____"^15logseq____",[29,logseq____"^Blogseq____",1696964710949,536870918]],[logseq____"^15logseq____",[29,logseq____"^;logseq____",logseq____"~u6525a066-a7a8-41bd-8bfb-922e29878cd1logseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^Klogseq____",1696964710955,536870918]],[logseq____"^15logseq____",[30,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[30,logseq____"^Ylogseq____",logseq____"binomische formelnlogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^11logseq____",logseq____"Binomische Formelnlogseq____",536870918]],[logseq____"^15logseq____",[30,logseq____"^Blogseq____",1696964710955,536870918]],[logseq____"^15logseq____",[30,logseq____"^;logseq____",logseq____"~u6525a066-d14f-4800-bb9e-ff2d4de10b02logseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^Klogseq____",1696964710953,536870918]],[logseq____"^15logseq____",[31,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[31,logseq____"^Ylogseq____",logseq____"trigonometrielogseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^11logseq____",logseq____"Trigonometrielogseq____",536870918]],[logseq____"^15logseq____",[31,logseq____"^Blogseq____",1696964710953,536870918]],[logseq____"^15logseq____",[31,logseq____"^;logseq____",logseq____"~u6525a066-18d3-4574-962a-db5fbbcbf94blogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^Klogseq____",1696964710959,536870918]],[logseq____"^15logseq____",[32,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[32,logseq____"^Ylogseq____",logseq____"wurzelnlogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^11logseq____",logseq____"Wurzelnlogseq____",536870918]],[logseq____"^15logseq____",[32,logseq____"^Blogseq____",1696964710959,536870918]],[logseq____"^15logseq____",[32,logseq____"^;logseq____",logseq____"~u6525a066-7902-4d04-8b60-9f7001b5e460logseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^Klogseq____",1696964710959,536870918]],[logseq____"^15logseq____",[33,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[33,logseq____"^Ylogseq____",logseq____"pascalsche dreiecklogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^11logseq____",logseq____"Pascalsche Dreiecklogseq____",536870918]],[logseq____"^15logseq____",[33,logseq____"^Blogseq____",1696964710959,536870918]],[logseq____"^15logseq____",[33,logseq____"^;logseq____",logseq____"~u6525a066-59c4-44f2-9a8c-7da42fc6f3aalogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^Klogseq____",1696964710962,536870918]],[logseq____"^15logseq____",[34,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[34,logseq____"^Ylogseq____",logseq____"rationalmachenlogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^11logseq____",logseq____"Rationalmachenlogseq____",536870918]],[logseq____"^15logseq____",[34,logseq____"^Blogseq____",1696964710962,536870918]],[logseq____"^15logseq____",[34,logseq____"^;logseq____",logseq____"~u6525a066-97ac-41aa-9051-a2502729fc0dlogseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^Klogseq____",1696964710960,536870918]],[logseq____"^15logseq____",[35,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[35,logseq____"^Ylogseq____",logseq____"auffrischung mathe 1logseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^11logseq____",logseq____"Auffrischung Mathe 1logseq____",536870918]],[logseq____"^15logseq____",[35,logseq____"^Blogseq____",1696964710960,536870918]],[logseq____"^15logseq____",[35,logseq____"^;logseq____",logseq____"~u6525a067-1473-4b9c-8b9a-ddda18f8e278logseq____",536870920]],[logseq____"^15logseq____",[36,logseq____"^Klogseq____",1696964710961,536870918]],[logseq____"^15logseq____",[36,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[36,logseq____"^Ylogseq____",logseq____"fixmelogseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^11logseq____",logseq____"FIXMElogseq____",536870918]],[logseq____"^15logseq____",[36,logseq____"^Blogseq____",1696964710961,536870918]],[logseq____"^15logseq____",[36,logseq____"^;logseq____",logseq____"~u6525a067-3ae5-4d50-8ad5-c19a8cf8e236logseq____",536870921]],[logseq____"^15logseq____",[37,logseq____"^Klogseq____",1696964710964,536870918]],[logseq____"^15logseq____",[37,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[37,logseq____"^Ylogseq____",logseq____"pq-formellogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^11logseq____",logseq____"pq-Formellogseq____",536870918]],[logseq____"^15logseq____",[37,logseq____"^Blogseq____",1696964710964,536870918]],[logseq____"^15logseq____",[37,logseq____"^;logseq____",logseq____"~u6525a066-f532-4732-91bb-2a4b3e6c95felogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^Klogseq____",1696964710962,536870918]],[logseq____"^15logseq____",[38,logseq____"^@logseq____",false,536870918]],[logseq____"^15logseq____",[38,logseq____"^Ylogseq____",logseq____"nennerlogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^11logseq____",logseq____"Nennerlogseq____",536870918]],[logseq____"^15logseq____",[38,logseq____"^Blogseq____",1696964710962,536870918]],[logseq____"^15logseq____",[38,logseq____"^;logseq____",logseq____"~u6525a066-3682-47d9-9ed7-c2956489b625logseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^Qlogseq____",logseq____"$\\\\frac12 \\\\sqrt2, \\\\frac12, \\\\frac12\\\\sqrt3 \\\\text{ sind werte von }\\\\sin x$\\n\\\\begin{align}\\n\\\\sin 30\\\\degreelogseq____&=\\\\frac12\\\\\\\\\\n\\\\sin 45\\\\degree logseq____&= \\\\frac12\\\\sqrt2 \\\\\\\\\\n\\\\sin 60\\\\degree logseq____&= \\\\frac12 \\\\sqrt3 \\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[39,logseq____"^Flogseq____",50,536870918]],[logseq____"^15logseq____",[39,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[39,logseq____"^Vlogseq____",50,536870918]],[logseq____"^15logseq____",[39,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[39,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[39,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[39,logseq____"^;logseq____",logseq____"~u6525a066-2891-4ef0-9d91-702defa17d63logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n$\\\\text{Wenn } 10^x=y \\\\text{, dann}$\\n\\\\begin{align}\\nxlogseq____&=\\\\lg y logseq____& ,r\\\\\\\\\\nxlogseq____&=\\\\log_y10logseq____&,f\\\\\\\\\\nxlogseq____&=\\\\log_{10}ylogseq____&,r \\\\\\\\\\n\\\\ln 4 - \\\\ln 2 logseq____&= \\\\ln 2 logseq____&, r \\\\\\\\\\n\\\\ln 4 - \\\\ln 2 logseq____&= \\\\ln 8 logseq____&, f \\\\\\\\\\n\\\\ln 4 + \\\\ln 2 logseq____&= \\\\ln 8 logseq____&, r \\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[40,logseq____"^Flogseq____",77,536870918]],[logseq____"^15logseq____",[40,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[40,logseq____"^Vlogseq____",77,536870918]],[logseq____"^15logseq____",[40,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[40,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[40,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[40,logseq____"^;logseq____",logseq____"~u6525a066-5c38-4459-9fd1-3f2c51b801bblogseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Qlogseq____",logseq____"#FIXME $(1+\\\\sqrt x)^5*(1-\\\\sqrt x)^5=2+20x+40x^2$ ist Falschlogseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[41,logseq____"^Flogseq____",80,536870918]],[logseq____"^15logseq____",[41,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[41,logseq____"^Vlogseq____",80,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[41,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[41,logseq____"^Hlogseq____",36,536870918]],[logseq____"^15logseq____",[41,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[41,logseq____"^;logseq____",logseq____"~u6525a066-e8af-4a19-b04f-55436c4aefbclogseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\nax^2+bx+clogseq____&=0logseq____&|:a\\\\quadlogseq____&a\\\\ne0\\\\\\\\\\nx^2+\\\\frac ba x + \\\\frac ca logseq____&= 0\\\\\\\\\\nplogseq____&=\\\\frac ba,logseq____&q = \\\\frac ca\\\\\\\\\\nx^2+px+qlogseq____&=0\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[42,logseq____"^Flogseq____",43,536870918]],[logseq____"^15logseq____",[42,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[42,logseq____"^Vlogseq____",43,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[42,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[42,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[42,logseq____"^;logseq____",logseq____"~u6525a066-f828-4337-affe-4ac1fdc3f037logseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Qlogseq____",logseq____"# [[Quadratische Gleichungen]]logseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[43,logseq____"^Flogseq____",60,536870918]],[logseq____"^15logseq____",[43,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[43,logseq____"^Vlogseq____",51,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[43,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[43,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"~:headinglogseq____",1],536870918]],[logseq____"^15logseq____",[43,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[43,logseq____"^Hlogseq____",26,536870918]],[logseq____"^15logseq____",[43,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[43,logseq____"^;logseq____",logseq____"~u6525a066-10d3-46f6-88c3-33373869928clogseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n(a+b)^2logseq____&=a^2+2ab+b^2logseq____&,\\\\text{ 1. Binomische Formel}\\\\\\\\\\n(a-b)^2logseq____&=a^2-2ab+b^2logseq____&,\\\\text{ 2. Binomische Formel}\\\\\\\\\\n(a+b)(a-b)logseq____&=a^2-b^2logseq____&,\\\\text{ 3. Binomische Formel}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[44,logseq____"^Flogseq____",70,536870918]],[logseq____"^15logseq____",[44,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[44,logseq____"^Vlogseq____",70,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[44,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[44,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[44,logseq____"^;logseq____",logseq____"~u6525a066-b1c7-431d-8137-eb18b487402dlogseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Qlogseq____",logseq____"#FIXME $\\\\sin^{-2}x+cos^2y=1,r$ ist falschlogseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[45,logseq____"^Flogseq____",64,536870918]],[logseq____"^15logseq____",[45,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[45,logseq____"^Vlogseq____",64,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[45,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[45,logseq____"^Hlogseq____",36,536870918]],[logseq____"^15logseq____",[45,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[45,logseq____"^;logseq____",logseq____"~u6525a066-2201-4ed9-b438-23d5035cea45logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Qlogseq____",logseq____"$\\\\text{Alte Schreibweise}$\\n\\\\begin{align}\\n\\\\text{cosa }logseq____&\\\\text{plus }logseq____&\\\\text{cubus }logseq____&\\\\text{acq }logseq____&6\\\\\\\\\\nxlogseq____&+logseq____&x^3logseq____&=logseq____&6\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[46,logseq____"^Flogseq____",54,536870918]],[logseq____"^15logseq____",[46,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[46,logseq____"^Vlogseq____",59,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[46,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[46,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[46,logseq____"^;logseq____",logseq____"~u6525a066-9e72-4367-82e2-9d2cfeecf79flogseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\na^nlogseq____&=\\\\underbrace{a*a*\\\\cdots*n}_n logseq____& a,blogseq____>0\\\\\\\\\\na^2b^2logseq____&=(ab)^n\\\\\\\\\\n\\\\frac{a^n}{b^n}logseq____&=\\\\left(\\\\frac ab\\\\right)^n\\\\\\\\\\na^na^mlogseq____&=a^{n+m}\\\\\\\\\\n\\\\frac1{a^n}logseq____&=a^{-n}\\\\\\\\\\n(a^n)^mlogseq____&=a^{nm}\\\\\\\\\\na^0logseq____&=1\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[47,logseq____"^Flogseq____",59,536870918]],[logseq____"^15logseq____",[47,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[47,logseq____"^Vlogseq____",59,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[47,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[47,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[47,logseq____"^;logseq____",logseq____"~u6525a066-c4fd-49c1-aec2-199ec0d16ddclogseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Qlogseq____",logseq____"$\\\\text{Wenn }alogseq____>0\\\\text{, dann}$\\n\\\\begin{align}\\n\\\\frac b{\\\\sqrt a} = \\\\frac b{\\\\sqrt a}*\\\\frac{\\\\sqrt a}{\\\\sqrt a} = \\\\frac {b\\\\sqrt a}a\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[48,logseq____"^Flogseq____",55,536870918]],[logseq____"^15logseq____",[48,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[48,logseq____"^Vlogseq____",55,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[48,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[48,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[48,logseq____"^;logseq____",logseq____"~u6525a066-d874-406c-8c3f-77d04cae6127logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[49,logseq____"^Flogseq____",77,536870918]],[logseq____"^15logseq____",[49,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[49,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[49,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[49,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[49,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[49,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[49,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[49,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[49,logseq____"^;logseq____",logseq____"~u6525a066-3586-4a6c-ad9a-9d6e8d107af5logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Trigonometrie]]logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[50,logseq____"^Flogseq____",66,536870918]],[logseq____"^15logseq____",[50,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[50,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[50,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[50,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[50,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[50,logseq____"^Hlogseq____",31,536870918]],[logseq____"^15logseq____",[50,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[50,logseq____"^;logseq____",logseq____"~u6525a066-e02f-4ddc-912c-09decf8412eblogseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Qlogseq____",logseq____"# [[Potenzen]] und [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[51,logseq____"^Flogseq____",70,536870918]],[logseq____"^15logseq____",[51,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[51,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[51,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[51,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[51,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[51,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[51,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[51,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[51,logseq____"^;logseq____",logseq____"~u6525a066-4229-4652-8451-3f97a96edc08logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Qlogseq____",logseq____"\\\\begin{align}\\n\\\\sqrt[n]{a^n}logseq____&=1^\\\\frac nn=a^1=a\\\\\\\\\\n\\\\sqrt[n]{\\\\frac ab} logseq____&= \\\\frac{\\\\sqrt[n]a}{\\\\sqrt[n]b}\\\\\\\\\\n\\\\left(\\\\sqrt[n]a\\\\right)^mlogseq____&=a^\\\\frac mn\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[52,logseq____"^Flogseq____",71,536870918]],[logseq____"^15logseq____",[52,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[52,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[52,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[52,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[52,logseq____"^;logseq____",logseq____"~u6525a066-4742-494a-9c46-2977bc654040logseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Qlogseq____",logseq____"Das [[Pascalsche Dreieck]] lässt sich auch mit den entsprechenden Binomialkoeffizienten darstellenlogseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[53,logseq____"^Flogseq____",73,536870918]],[logseq____"^15logseq____",[53,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[53,logseq____"^Vlogseq____",73,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",33,536870918]],[logseq____"^15logseq____",[53,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[53,logseq____"^Hlogseq____",33,536870918]],[logseq____"^15logseq____",[53,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[53,logseq____"^;logseq____",logseq____"~u6525a066-d76a-4121-abfe-05e080df6215logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n(a+b)^3(a^2+b^2)^3(a-b)^3logseq____&=(a^2+b^2)^3\\\\left((a+b)(a-b)\\\\right)^3\\\\notag\\\\\\\\\\nlogseq____&=(a^2+b^2)^3(a^2-b^2)^3\\\\notag\\\\\\\\\\nlogseq____&=\\\\left((a^2+b^2)(a^2-b^2)\\\\right)^3\\\\notag\\\\\\\\\\nlogseq____&=(a^4-b^4)^3\\\\\\\\\\n\\\\frac{a-b}{(a+b)^{-1}}logseq____&=(a-b)(a+b)\\\\notag\\\\\\\\\\nlogseq____&=a^2-b^2\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[54,logseq____"^Flogseq____",47,536870918]],[logseq____"^15logseq____",[54,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[54,logseq____"^Vlogseq____",59,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[54,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[54,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[54,logseq____"^;logseq____",logseq____"~u6525a066-0d33-45fc-b313-73d44ea91c66logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Qlogseq____",logseq____"## [[Rationalmachen]] des [[Nenner]]slogseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[55,logseq____"^Flogseq____",65,536870918]],[logseq____"^15logseq____",[55,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[55,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[55,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[55,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[55,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[55,logseq____"^Hlogseq____",34,536870918]],[logseq____"^15logseq____",[55,logseq____"^Hlogseq____",38,536870918]],[logseq____"^15logseq____",[55,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[55,logseq____"^;logseq____",logseq____"~u6525a066-ebb8-4f34-bba8-f0428d1304aalogseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Qlogseq____",logseq____"![draws/2023-10-08-21-23-31.excalidraw](../assets/excalidraw_svg/2023-10-08-21-23-31.svg)logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[56,logseq____"^Flogseq____",63,536870918]],[logseq____"^15logseq____",[56,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[56,logseq____"^Vlogseq____",74,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[56,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[56,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[56,logseq____"^;logseq____",logseq____"~u6525a066-3377-4f1b-90cd-9fa4d0120834logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Qlogseq____",logseq____"#FIXME gleichung (50) hat angeblich noch ne Zeile $=x^0+3ylogseq____>0$ welche keinen Sinn ergibtlogseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[57,logseq____"^Flogseq____",69,536870918]],[logseq____"^15logseq____",[57,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[57,logseq____"^Vlogseq____",69,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[57,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[57,logseq____"^Hlogseq____",36,536870918]],[logseq____"^15logseq____",[57,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[57,logseq____"^;logseq____",logseq____"~u6525a066-8de4-499b-bcd9-355b960a80c9logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Qlogseq____",logseq____"cosa -logseq____> beliebige Variable\\ncubus -logseq____> hoch 3logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[58,logseq____"^Flogseq____",46,536870918]],[logseq____"^15logseq____",[58,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[58,logseq____"^Vlogseq____",46,536870918]],[logseq____"^15logseq____",[58,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[58,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[58,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[58,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[58,logseq____"^;logseq____",logseq____"~u6525a066-9e75-4b49-ad5d-538b9ff5a586logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Qlogseq____",logseq____"# [[Potenzen]]logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[59,logseq____"^Flogseq____",51,536870918]],[logseq____"^15logseq____",[59,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[59,logseq____"^Vlogseq____",51,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[59,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[59,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[59,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[59,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[59,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[59,logseq____"^;logseq____",logseq____"~u6525a066-2f5f-4dcc-aa67-f08b7eada1delogseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Qlogseq____",logseq____"# [[Wurzeln]]logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[60,logseq____"^Flogseq____",59,536870918]],[logseq____"^15logseq____",[60,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[60,logseq____"^Vlogseq____",51,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[60,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[60,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[60,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[60,logseq____"^Hlogseq____",32,536870918]],[logseq____"^15logseq____",[60,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[60,logseq____"^;logseq____",logseq____"~u6525a066-24de-485a-80d2-e128e7da9b85logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Qlogseq____",logseq____"$\\\\text{Für } x=\\\\frac25 \\\\text{ und } y=\\\\frac37 \\\\text{ ist }\\\\frac xy$\\n\\\\begin{align}\\n\\\\frac xy = \\\\frac{\\\\frac25}{\\\\frac37} = \\\\frac{2*7}{3*5}=\\\\frac{14}{15}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[61,logseq____"^Flogseq____",66,536870918]],[logseq____"^15logseq____",[61,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[61,logseq____"^Vlogseq____",66,536870918]],[logseq____"^15logseq____",[61,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[61,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[61,logseq____"^;logseq____",logseq____"~u6525a066-00c5-4508-b822-d87d143b52a8logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n$\\\\text{Wenn }alogseq____>0\\\\text{, dann}$\\n\\\\begin{align}\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a\\\\sqrt{a}logseq____&,r\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a^2-\\\\sqrt{a}logseq____&,f\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=\\\\sqrt{a^3}logseq____&,r\\\\\\\\\\n\\\\frac{a^2}{\\\\sqrt{a}}logseq____&=a^{\\\\frac32}logseq____&,r\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[62,logseq____"^Flogseq____",49,536870918]],[logseq____"^15logseq____",[62,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[62,logseq____"^Vlogseq____",49,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[62,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[62,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[62,logseq____"^;logseq____",logseq____"~u6525a066-938f-4d88-a60e-50d1c5255617logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche }$[[Gleichungen]]$\\\\text{ sind richtig?}$\\n\\\\begin{align}\\ne^{x+y} logseq____&= e^x + e^y logseq____& ,f \\\\\\\\\\ne^{x+y} logseq____&= e^x * x^y logseq____& ,r \\\\\\\\\\ne^{x+y}logseq____&=e^{xy} logseq____& ,f\\\\\\\\\\ne^{ln(x+y)}logseq____&=x+y logseq____& ,x+ylogseq____>c \\\\\\\\\\ne^{ln(x+y)}logseq____&=e^x*e^ylogseq____&,f\\\\\\\\\\ne^{ln(x+y)}logseq____&=ln(e^x+y)logseq____&,x+ylogseq____>0\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[63,logseq____"^Flogseq____",74,536870918]],[logseq____"^15logseq____",[63,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[63,logseq____"^Vlogseq____",74,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",29,536870918]],[logseq____"^15logseq____",[63,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[63,logseq____"^Hlogseq____",29,536870918]],[logseq____"^15logseq____",[63,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[63,logseq____"^;logseq____",logseq____"~u6525a066-2ce6-4326-9f2b-72602b1e8bd1logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Qlogseq____",logseq____"$\\\\text{Welche Gleichungen sind richtig?}$\\n\\\\begin{align}\\n\\\\tan x logseq____&= \\\\frac{\\\\sin x}{\\\\cos x} logseq____&, \\\\cos x \\\\ne 0\\\\\\\\\\n\\\\sin^{-2}x-\\\\cos^2xlogseq____&=1logseq____&,f\\\\\\\\\\n\\\\sin x = \\\\cos x logseq____&= 1 logseq____&, f\\\\\\\\\\n\\\\sin^{-2}x+cos^2ylogseq____&=1logseq____&,r\\\\\\\\\\n1+tan^2xlogseq____&=\\\\frac1{\\\\cos^2x}logseq____&,\\\\cos x\\\\ne0\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[64,logseq____"^Flogseq____",39,536870918]],[logseq____"^15logseq____",[64,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[64,logseq____"^Vlogseq____",50,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",31,536870918]],[logseq____"^15logseq____",[64,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[64,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[64,logseq____"^;logseq____",logseq____"~u6525a066-97e6-4a1a-959b-54e7e83a7af5logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n|y|logseq____&=\\\\begin{cases}\\ny logseq____&\\\\text{ falls } y\\\\ge0\\\\\\\\\\n-y logseq____&\\\\text{ falls } ylogseq____<0\\\\\\\\\\n\\\\end{cases}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[65,logseq____"^Flogseq____",69,536870918]],[logseq____"^15logseq____",[65,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[65,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[65,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[65,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[65,logseq____"^;logseq____",logseq____"~u6525a066-b7f7-4164-a0d5-10a05156a0b7logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Qlogseq____",logseq____"# Was ist Größer?logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[66,logseq____"^Flogseq____",49,536870918]],[logseq____"^15logseq____",[66,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[66,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[66,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[66,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[66,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[66,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[66,logseq____"^;logseq____",logseq____"~u6525a066-2f61-4181-93ee-37d0808fd2fflogseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Qlogseq____",logseq____"$\\\\text{Häufige Falle:}$\\n\\\\begin{align}\\n\\\\left((-1)^2\\\\right)^\\\\frac12logseq____&=(-1)^\\\\frac22logseq____&=(-1)^1logseq____&=-1\\\\\\\\\\n\\\\left((-1)^2\\\\right)^\\\\frac12logseq____&=1^\\\\frac12logseq____&logseq____&=1\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[67,logseq____"^Flogseq____",62,536870918]],[logseq____"^15logseq____",[67,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[67,logseq____"^Vlogseq____",49,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[67,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[67,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[67,logseq____"^;logseq____",logseq____"~u6525a066-b67c-4d23-a7a3-923a2edfee1dlogseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Qlogseq____",logseq____"\\\\begin{array}{c} (a+b)^0logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&1 \\\\\\\\\\n(a+b)^1logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&logseq____&1 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^2logseq____&logseq____&logseq____&logseq____&logseq____&logseq____& 1 logseq____&logseq____& 2 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^3logseq____&logseq____&logseq____&logseq____&logseq____&1 logseq____&logseq____& 3 logseq____&logseq____& 3 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^4logseq____&logseq____&logseq____&logseq____& 1 logseq____&logseq____& 4 logseq____&logseq____& 6 logseq____&logseq____& 4 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^5logseq____&logseq____&logseq____& 1 logseq____&logseq____& 5 logseq____&logseq____& 10 logseq____&logseq____& 10 logseq____&logseq____& 5 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^6logseq____&logseq____& 1 logseq____&logseq____& 6 logseq____&logseq____& 15 logseq____&logseq____& 20 logseq____&logseq____& 15 logseq____&logseq____& 6 logseq____&logseq____& 1 \\\\\\\\\\n(a+b)^7logseq____&1 logseq____&logseq____& 7 logseq____&logseq____&21 logseq____&logseq____& 35 logseq____&logseq____& 35 logseq____&logseq____& \\\\cdots\\\\end{array}logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[68,logseq____"^Flogseq____",78,536870918]],[logseq____"^15logseq____",[68,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[68,logseq____"^Vlogseq____",78,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[68,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[68,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[68,logseq____"^;logseq____",logseq____"~u6525a066-b459-440c-98f6-daa4d250f7eclogseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\\\sqrt{x^4+6x^2y+9y^2}logseq____&=\\\\sqrt{(x^2+3y)^2}=x^2+3y\\\\\\\\\\n\\\\sqrt {x + \\\\sqrt{x^2-y^2}}\\\\sqrt{x-\\\\sqrt{x^2-y^2}}logseq____&=\\\\sqrt{\\\\left(x + \\\\sqrt{x^2-y^2}\\\\right)\\\\left(x-\\\\sqrt{x^2-y^2}\\\\right)}\\\\notag\\\\\\\\\\nlogseq____&=\\\\sqrt{x^2-(x^2-y^2)}\\\\notag\\\\\\\\\\nlogseq____&=\\\\sqrt{y^2}=\\\\left|y\\\\right|\\\\\\\\\\n\\\\sqrt[5]{a\\\\sqrt[3]a}=\\\\sqrt[5]{\\\\sqrt[3]{a^3}\\\\sqrt[3]a}\\nlogseq____&=\\\\sqrt[5]{\\\\sqrt[3]{a^4}}\\n=\\\\sqrt[5]{a^\\\\frac43}\\n=a^{\\\\frac43\\\\frac15}=a^\\\\frac4{15}\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[69,logseq____"^Flogseq____",52,536870918]],[logseq____"^15logseq____",[69,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[69,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[69,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[69,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[69,logseq____"^;logseq____",logseq____"~u6525a066-db0a-491a-aa99-753f2024a321logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Qlogseq____",logseq____"# [[Binomische Formeln]]logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[70,logseq____"^Flogseq____",50,536870918]],[logseq____"^15logseq____",[70,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[70,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[70,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[70,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[70,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[70,logseq____"^Hlogseq____",30,536870918]],[logseq____"^15logseq____",[70,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[70,logseq____"^;logseq____",logseq____"~u6525a066-00b3-46b2-a565-210c8919da13logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Qlogseq____",logseq____"$\\\\text{Die Lösung von } x^n-a=0 \\\\text{ ist } x=\\\\sqrt[n]a$ #FIXME ich glaube hier fehlt logseq____>0 constraintlogseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[71,logseq____"^Flogseq____",60,536870918]],[logseq____"^15logseq____",[71,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[71,logseq____"^Vlogseq____",60,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[71,logseq____"^Ulogseq____",36,536870918]],[logseq____"^15logseq____",[71,logseq____"^Hlogseq____",36,536870918]],[logseq____"^15logseq____",[71,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[71,logseq____"^;logseq____",logseq____"~u6525a066-f28d-4cf1-a0d3-acf5c60b2581logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Qlogseq____",logseq____"$\\\\text{Allgemein}$\\n\\\\begin{align}\\n\\\\ln a + \\\\ln b logseq____&= \\\\ln(a*b) \\\\\\\\\\n\\\\ln(-a) logseq____&= \\\\frac1{\\\\ln a}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[72,logseq____"^Flogseq____",40,536870918]],[logseq____"^15logseq____",[72,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[72,logseq____"^Vlogseq____",77,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[72,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[72,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[72,logseq____"^;logseq____",logseq____"~u6525a066-95f1-41f8-ae9c-f787f1b19b6blogseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Qlogseq____",logseq____"## [[Binomialkoeffizient]]logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[73,logseq____"^Flogseq____",80,536870918]],[logseq____"^15logseq____",[73,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[73,logseq____"^Vlogseq____",78,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[73,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[73,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[73,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[73,logseq____"^Hlogseq____",28,536870918]],[logseq____"^15logseq____",[73,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[73,logseq____"^;logseq____",logseq____"~u6525a066-d31e-488d-9c99-265ca19e65e3logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Potenzen]]logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[74,logseq____"^Flogseq____",35,536870918]],[logseq____"^15logseq____",[74,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[74,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[74,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[74,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[74,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[74,logseq____"^Hlogseq____",24,536870918]],[logseq____"^15logseq____",[74,logseq____"^17logseq____",false,536870918]],[logseq____"^15logseq____",[74,logseq____"^;logseq____",logseq____"~u6525a066-dce8-495e-9a43-1079c3df505blogseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel für die 3. Binomische Formel}$\\n\\\\begin{align}\\n\\\\frac{\\\\frac1{a-b}+\\\\frac1{a+b}}{\\\\frac1{a-b}-\\\\frac1{a+b}}\\nlogseq____&=\\\\frac{\\\\frac{a+b+a-b}{(a+b)*(a-b)}}{\\\\frac{a+b-(a-b)}{(a+b)*(a-b)}}\\nlogseq____&=\\\\frac{a+b+a-b}{a+b-a+b}\\nlogseq____&=\\\\frac{2a}{2b}\\nlogseq____&=\\\\frac ab\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[75,logseq____"^Flogseq____",44,536870918]],[logseq____"^15logseq____",[75,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[75,logseq____"^Vlogseq____",70,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[75,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[75,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[75,logseq____"^;logseq____",logseq____"~u6525a066-b50c-4110-941e-043fdc5df27alogseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Qlogseq____",logseq____"$\\\\text{Herleitung mit }$[[Quadratische Ergänzung]]\\n\\\\begin{align}\\nx^2+px+qlogseq____&=0logseq____&|logseq____&-q\\\\\\\\\\nx^2+pxlogseq____&=-qlogseq____&|logseq____&+\\\\left(\\\\frac p2\\\\right)^2\\\\\\\\\\nx^2+px+\\\\left(\\\\frac p2\\\\right)^2logseq____&=-q+\\\\left(\\\\frac p2\\\\right)^2\\\\\\\\\\n\\\\underbrace{\\\\left(x+\\\\frac p2\\\\right)^2}_\\\\text{1. binomische Formel}logseq____&=-q+\\\\left(\\\\frac p2\\\\right)^2logseq____&|logseq____&\\\\sqrt{()}\\\\\\\\\\n\\\\left|x+\\\\frac p2\\\\right|logseq____&=\\\\sqrt{\\\\frac{p^2}4-q}logseq____&,logseq____&\\\\text{ falls }\\\\frac{p^2}4-q\\\\ge0\\\\\\\\\\nx+\\\\frac p2logseq____&=\\\\pm\\\\sqrt{\\\\frac{p^2}4-q}logseq____&|logseq____&-\\\\frac p2\\\\\\\\\\nxlogseq____&=-\\\\frac p2\\\\pm\\\\sqrt{\\\\frac{p^2}4-q}\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[76,logseq____"^Flogseq____",81,536870918]],[logseq____"^15logseq____",[76,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[76,logseq____"^Vlogseq____",81,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",23,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[76,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[76,logseq____"^Hlogseq____",23,536870918]],[logseq____"^15logseq____",[76,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[76,logseq____"^;logseq____",logseq____"~u6525a066-52ec-43d1-a884-17d2d1af3d69logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Qlogseq____",logseq____"# Wissensabgleich [[Logarithmen]]logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[77,logseq____"^Flogseq____",74,536870918]],[logseq____"^15logseq____",[77,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[77,logseq____"^Vlogseq____",35,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",27,536870918]],[logseq____"^15logseq____",[77,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[77,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870918]],[logseq____"^15logseq____",[77,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[77,logseq____"^Hlogseq____",27,536870918]],[logseq____"^15logseq____",[77,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[77,logseq____"^;logseq____",logseq____"~u6525a066-be5f-4868-9b45-cc93552172b7logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Qlogseq____",logseq____"## [[Pascalsches Dreieck]]logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[78,logseq____"^Flogseq____",75,536870918]],[logseq____"^15logseq____",[78,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[78,logseq____"^Vlogseq____",70,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[78,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[78,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[78,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[78,logseq____"^Hlogseq____",25,536870918]],[logseq____"^15logseq____",[78,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[78,logseq____"^;logseq____",logseq____"~u6525a066-1d9f-483e-9d61-7def27d70e7elogseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Qlogseq____",logseq____"\\\\begin{array}{c}\\n{0\\\\choose 0}\\n\\\\\\\\\\n{1\\\\choose 0} {1\\\\choose 1}\\n\\\\\\\\\\n{2\\\\choose 0} {2\\\\choose 1} {2\\\\choose 2}\\n\\\\\\\\\\n{3\\\\choose 0} {3\\\\choose 1} {3\\\\choose 2} {3\\\\choose 3}\\n\\\\\\\\\\n\\\\cdots\\n\\\\end{array}logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[79,logseq____"^Flogseq____",53,536870918]],[logseq____"^15logseq____",[79,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[79,logseq____"^Vlogseq____",73,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",28,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[79,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[79,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[79,logseq____"^;logseq____",logseq____"~u6525a066-12ea-47f8-86a9-28fabf22e55flogseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n(2x+y)^4logseq____&=(2x)^4+4*(2x)^3y+6*(2x)^2y^2+4*2xy^3+y^4\\\\notag\\\\\\\\\\nlogseq____&=16x^4+32x^3y+24x^2y^2+8xy^3+y^4\\\\\\\\\\n(1+\\\\sqrt x)^5*(1-\\\\sqrt x)^5logseq____&=2+20x+40x^2\\\\\\\\\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[80,logseq____"^Flogseq____",68,536870918]],[logseq____"^15logseq____",[80,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[80,logseq____"^Vlogseq____",78,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",25,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",30,536870918]],[logseq____"^15logseq____",[80,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[80,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[80,logseq____"^;logseq____",logseq____"~u6525a066-575c-4af1-ae86-009f1d783e34logseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Qlogseq____",logseq____"## [[pq-Formel]]logseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[81,logseq____"^Flogseq____",42,536870918]],[logseq____"^15logseq____",[81,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[81,logseq____"^Vlogseq____",43,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",26,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[81,logseq____"^Ulogseq____",37,536870918]],[logseq____"^15logseq____",[81,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870918]],[logseq____"^15logseq____",[81,logseq____"^Jlogseq____",[],536870918]],[logseq____"^15logseq____",[81,logseq____"^Hlogseq____",37,536870918]],[logseq____"^15logseq____",[81,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[81,logseq____"^;logseq____",logseq____"~u6525a066-e420-4931-828c-4b8bfab7f4eelogseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\\\underbrace{\\\\frac6{2+\\\\sqrt2}*\\\\frac{2-\\\\sqrt2}{2-\\\\sqrt2}\\n= \\\\frac{6(2-\\\\sqrt2)}{2^2-(\\\\sqrt2)^2}}_\\\\text{3. binomische Formel}\\nlogseq____&=\\\\frac{6(2-\\\\sqrt2)}2=3(2-\\\\sqrt2)\\\\\\\\\\n\\\\frac{a-b}{\\\\sqrt a+\\\\sqrt b}logseq____&=\\\\frac{a-b}{\\\\sqrt a + \\\\sqrt b}\\\\frac{\\\\sqrt a-\\\\sqrt b}{\\\\sqrt a-\\\\sqrt b}logseq____&, a,b,logseq____>0\\\\notag\\\\\\\\\\n=\\\\frac{(a-b)(\\\\sqrt a-\\\\sqrt b)}{(a-b)}logseq____&=\\\\sqrt a\\\\sqrt b\\n\\\\end{align}logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Ologseq____",logseq____"^16logseq____",536870918]],[logseq____"^15logseq____",[82,logseq____"^Flogseq____",48,536870918]],[logseq____"^15logseq____",[82,logseq____"^Xlogseq____",35,536870918]],[logseq____"^15logseq____",[82,logseq____"^Vlogseq____",55,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",24,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",32,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",34,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",35,536870918]],[logseq____"^15logseq____",[82,logseq____"^Ulogseq____",38,536870918]],[logseq____"^15logseq____",[82,logseq____"^17logseq____",true,536870918]],[logseq____"^15logseq____",[82,logseq____"^;logseq____",logseq____"~u6525a066-8c50-48e9-bf49-c614098b9a57logseq____",536870918]],[logseq____"^15logseq____",[84,logseq____"^Klogseq____",1696964711114,536870919]],[logseq____"^15logseq____",[84,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[84,logseq____"^Ylogseq____",logseq____"auffrischung mathe 2logseq____",536870919]],[logseq____"^15logseq____",[84,logseq____"^11logseq____",logseq____"Auffrischung Mathe 2logseq____",536870919]],[logseq____"^15logseq____",[84,logseq____"^Blogseq____",1696964711114,536870919]],[logseq____"^15logseq____",[84,logseq____"^;logseq____",logseq____"~u6525a067-0e62-4329-8154-f2e1fb238459logseq____",536870920]],[logseq____"^15logseq____",[85,logseq____"^Klogseq____",1696964711114,536870919]],[logseq____"^15logseq____",[85,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[85,logseq____"^Ylogseq____",logseq____"linkslogseq____",536870919]],[logseq____"^15logseq____",[85,logseq____"^11logseq____",logseq____"Linkslogseq____",536870919]],[logseq____"^15logseq____",[85,logseq____"^Blogseq____",1696964711114,536870919]],[logseq____"^15logseq____",[85,logseq____"^;logseq____",logseq____"~u6525a067-9b43-4c9b-b554-44af31a7bff5logseq____",536870919]],[logseq____"^15logseq____",[86,logseq____"^Klogseq____",1696964711117,536870919]],[logseq____"^15logseq____",[86,logseq____"^@logseq____",false,536870919]],[logseq____"^15logseq____",[86,logseq____"^Ylogseq____",logseq____"wolframalphalogseq____",536870919]],[logseq____"^15logseq____",[86,logseq____"^11logseq____",logseq____"Wolframalphalogseq____",536870919]],[logseq____"^15logseq____",[86,logseq____"^Blogseq____",1696964711117,536870919]],[logseq____"^15logseq____",[86,logseq____"^;logseq____",logseq____"~u6525a067-2953-466c-94da-41e099ba5beelogseq____",536870919]],[logseq____"^15logseq____",[87,logseq____"^Qlogseq____",logseq____"# [[Links]]logseq____",536870919]],[logseq____"^15logseq____",[87,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[87,logseq____"^Flogseq____",84,536870919]],[logseq____"^15logseq____",[87,logseq____"^Xlogseq____",84,536870919]],[logseq____"^15logseq____",[87,logseq____"^Vlogseq____",84,536870919]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",84,536870919]],[logseq____"^15logseq____",[87,logseq____"^Ulogseq____",85,536870919]],[logseq____"^15logseq____",[87,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870919]],[logseq____"^15logseq____",[87,logseq____"^Jlogseq____",[],536870919]],[logseq____"^15logseq____",[87,logseq____"^Hlogseq____",85,536870919]],[logseq____"^15logseq____",[87,logseq____"^17logseq____",false,536870919]],[logseq____"^15logseq____",[87,logseq____"^;logseq____",logseq____"~u6525a067-dee5-4422-8407-44672f01070dlogseq____",536870919]],[logseq____"^15logseq____",[88,logseq____"^Qlogseq____",logseq____"[[Wolframalpha]]logseq____",536870919]],[logseq____"^15logseq____",[88,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[88,logseq____"^Flogseq____",87,536870919]],[logseq____"^15logseq____",[88,logseq____"^Xlogseq____",84,536870919]],[logseq____"^15logseq____",[88,logseq____"^Vlogseq____",87,536870919]],[logseq____"^15logseq____",[88,logseq____"^Ulogseq____",84,536870919]],[logseq____"^15logseq____",[88,logseq____"^Ulogseq____",85,536870919]],[logseq____"^15logseq____",[88,logseq____"^Ulogseq____",86,536870919]],[logseq____"^15logseq____",[88,logseq____"^Hlogseq____",86,536870919]],[logseq____"^15logseq____",[88,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[88,logseq____"^;logseq____",logseq____"~u6525a067-0437-459e-96da-3511b3ecac43logseq____",536870919]],[logseq____"^15logseq____",[89,logseq____"^Qlogseq____",logseq____"https://www.wolframalpha.comlogseq____",536870919]],[logseq____"^15logseq____",[89,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[89,logseq____"^Flogseq____",88,536870919]],[logseq____"^15logseq____",[89,logseq____"^Xlogseq____",84,536870919]],[logseq____"^15logseq____",[89,logseq____"^Vlogseq____",88,536870919]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",84,536870919]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",85,536870919]],[logseq____"^15logseq____",[89,logseq____"^Ulogseq____",86,536870919]],[logseq____"^15logseq____",[89,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[89,logseq____"^;logseq____",logseq____"~u6525a067-6281-4fea-acc3-959d864f2014logseq____",536870919]],[logseq____"^15logseq____",[90,logseq____"^Qlogseq____",logseq____"logseq____",536870919]],[logseq____"^15logseq____",[90,logseq____"^Ologseq____",logseq____"^16logseq____",536870919]],[logseq____"^15logseq____",[90,logseq____"^Flogseq____",87,536870919]],[logseq____"^15logseq____",[90,logseq____"^Xlogseq____",84,536870919]],[logseq____"^15logseq____",[90,logseq____"^Vlogseq____",84,536870919]],[logseq____"^15logseq____",[90,logseq____"^Ulogseq____",84,536870919]],[logseq____"^15logseq____",[90,logseq____"^17logseq____",true,536870919]],[logseq____"^15logseq____",[90,logseq____"^;logseq____",logseq____"~u6525a067-6544-4956-9f82-c7996be97f8clogseq____",536870919]],[logseq____"^15logseq____",[92,logseq____"^Klogseq____",1696964711131,536870920]],[logseq____"^15logseq____",[92,logseq____"^@logseq____",false,536870920]],[logseq____"^15logseq____",[92,logseq____"^Ylogseq____",logseq____"auffrischung mathelogseq____",536870920]],[logseq____"^15logseq____",[92,logseq____"^11logseq____",logseq____"Auffrischung Mathelogseq____",536870920]],[logseq____"^15logseq____",[92,logseq____"^Blogseq____",1696964711131,536870920]],[logseq____"^15logseq____",[92,logseq____"^;logseq____",logseq____"~u6525a067-0a27-48dd-806e-6f8ec4abb667logseq____",536870927]],[logseq____"^15logseq____",[93,logseq____"^Klogseq____",1696964711132,536870920]],[logseq____"^15logseq____",[93,logseq____"^@logseq____",false,536870920]],[logseq____"^15logseq____",[93,logseq____"^Ylogseq____",logseq____"auffrischung mathe 3logseq____",536870920]],[logseq____"^15logseq____",[93,logseq____"^11logseq____",logseq____"Auffrischung Mathe 3logseq____",536870920]],[logseq____"^15logseq____",[93,logseq____"^Blogseq____",1696964711132,536870920]],[logseq____"^15logseq____",[93,logseq____"^;logseq____",logseq____"~u6525a067-2141-4bf3-ae4d-b4ceffe2ad3alogseq____",536870920]],[logseq____"^15logseq____",[94,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 1]]logseq____",536870920]],[logseq____"^15logseq____",[94,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[94,logseq____"^Flogseq____",92,536870920]],[logseq____"^15logseq____",[94,logseq____"^Xlogseq____",92,536870920]],[logseq____"^15logseq____",[94,logseq____"^Vlogseq____",92,536870920]],[logseq____"^15logseq____",[94,logseq____"^Ulogseq____",35,536870920]],[logseq____"^15logseq____",[94,logseq____"^Ulogseq____",92,536870920]],[logseq____"^15logseq____",[94,logseq____"^Hlogseq____",35,536870920]],[logseq____"^15logseq____",[94,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[94,logseq____"^;logseq____",logseq____"~u6525a067-93ce-4d57-8d18-44d6113f734blogseq____",536870920]],[logseq____"^15logseq____",[95,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 2]]logseq____",536870920]],[logseq____"^15logseq____",[95,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[95,logseq____"^Flogseq____",94,536870920]],[logseq____"^15logseq____",[95,logseq____"^Xlogseq____",92,536870920]],[logseq____"^15logseq____",[95,logseq____"^Vlogseq____",92,536870920]],[logseq____"^15logseq____",[95,logseq____"^Ulogseq____",84,536870920]],[logseq____"^15logseq____",[95,logseq____"^Ulogseq____",92,536870920]],[logseq____"^15logseq____",[95,logseq____"^Hlogseq____",84,536870920]],[logseq____"^15logseq____",[95,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[95,logseq____"^;logseq____",logseq____"~u6525a067-0dc8-4f00-b714-c887d1cfc316logseq____",536870920]],[logseq____"^15logseq____",[96,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe 3]]logseq____",536870920]],[logseq____"^15logseq____",[96,logseq____"^Ologseq____",logseq____"^16logseq____",536870920]],[logseq____"^15logseq____",[96,logseq____"^Flogseq____",95,536870920]],[logseq____"^15logseq____",[96,logseq____"^Xlogseq____",92,536870920]],[logseq____"^15logseq____",[96,logseq____"^Vlogseq____",92,536870920]],[logseq____"^15logseq____",[96,logseq____"^Ulogseq____",92,536870920]],[logseq____"^15logseq____",[96,logseq____"^Ulogseq____",93,536870920]],[logseq____"^15logseq____",[96,logseq____"^Hlogseq____",93,536870920]],[logseq____"^15logseq____",[96,logseq____"^17logseq____",true,536870920]],[logseq____"^15logseq____",[96,logseq____"^;logseq____",logseq____"~u6525a067-f7c8-49c1-87a0-0f5ca3a30069logseq____",536870920]],[logseq____"^15logseq____",[98,logseq____"^Klogseq____",1696964711253,536870921]],[logseq____"^15logseq____",[98,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[98,logseq____"^Ylogseq____",logseq____"wahrheitswerteverlauflogseq____",536870921]],[logseq____"^15logseq____",[98,logseq____"^11logseq____",logseq____"Wahrheitswerteverlauflogseq____",536870921]],[logseq____"^15logseq____",[98,logseq____"^Blogseq____",1696964711253,536870921]],[logseq____"^15logseq____",[98,logseq____"^;logseq____",logseq____"~u6525a067-ebdd-4fe2-84e2-b69285a503belogseq____",536870921]],[logseq____"^15logseq____",[99,logseq____"^Klogseq____",1696964711247,536870921]],[logseq____"^15logseq____",[99,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[99,logseq____"^Ylogseq____",logseq____"aussagenlogische variablelogseq____",536870921]],[logseq____"^15logseq____",[99,logseq____"^11logseq____",logseq____"Aussagenlogische variablelogseq____",536870921]],[logseq____"^15logseq____",[99,logseq____"^Blogseq____",1696964711247,536870921]],[logseq____"^15logseq____",[99,logseq____"^;logseq____",logseq____"~u6525a067-f7a9-4ff5-951a-873e06bf4acflogseq____",536870921]],[logseq____"^15logseq____",[100,logseq____"^Klogseq____",1696964711241,536870921]],[logseq____"^15logseq____",[100,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[100,logseq____"^Ylogseq____",logseq____"wikipedialogseq____",536870921]],[logseq____"^15logseq____",[100,logseq____"^11logseq____",logseq____"Wikipedialogseq____",536870921]],[logseq____"^15logseq____",[100,logseq____"^Blogseq____",1696964711241,536870921]],[logseq____"^15logseq____",[100,logseq____"^;logseq____",logseq____"~u6525a067-1421-4534-b850-e8567894dd53logseq____",536870921]],[logseq____"^15logseq____",[101,logseq____"^Klogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[101,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[101,logseq____"^Ylogseq____",logseq____"formellogseq____",536870921]],[logseq____"^15logseq____",[101,logseq____"^11logseq____",logseq____"Formellogseq____",536870921]],[logseq____"^15logseq____",[101,logseq____"^Blogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[101,logseq____"^;logseq____",logseq____"~u6525a067-ef5e-4cee-bb04-3e22337bd97flogseq____",536870921]],[logseq____"^15logseq____",[102,logseq____"^Klogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[102,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[102,logseq____"^Ylogseq____",logseq____"wahrheitswertlogseq____",536870921]],[logseq____"^15logseq____",[102,logseq____"^11logseq____",logseq____"Wahrheitswertlogseq____",536870921]],[logseq____"^15logseq____",[102,logseq____"^Blogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[102,logseq____"^;logseq____",logseq____"~u6525a067-ffb3-4d32-91b0-cd11cb9c505dlogseq____",536870921]],[logseq____"^15logseq____",[103,logseq____"^Klogseq____",1696964711240,536870921]],[logseq____"^15logseq____",[103,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[103,logseq____"^Ylogseq____",logseq____"\\logseq____"mathematische grundlagen der informatik\\logseq____", 5. auflage 2011logseq____",536870921]],[logseq____"^15logseq____",[103,logseq____"^11logseq____",logseq____"\\logseq____"Mathematische Grundlagen der Informatik\\logseq____", 5. Auflage 2011logseq____",536870921]],[logseq____"^15logseq____",[103,logseq____"^Blogseq____",1696964711240,536870921]],[logseq____"^15logseq____",[103,logseq____"^;logseq____",logseq____"~u6525a067-cc2b-4bfe-8d8d-bd99e5fecce3logseq____",536870921]],[logseq____"^15logseq____",[104,logseq____"^Klogseq____",1696964711254,536870921]],[logseq____"^15logseq____",[104,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[104,logseq____"^Ylogseq____",logseq____"tantologielogseq____",536870921]],[logseq____"^15logseq____",[104,logseq____"^11logseq____",logseq____"Tantologielogseq____",536870921]],[logseq____"^15logseq____",[104,logseq____"^Blogseq____",1696964711254,536870921]],[logseq____"^15logseq____",[104,logseq____"^;logseq____",logseq____"~u6525a067-7724-4923-9b72-cda42c59c7a2logseq____",536870921]],[logseq____"^15logseq____",[105,logseq____"^Klogseq____",1696964711252,536870921]],[logseq____"^15logseq____",[105,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[105,logseq____"^Ylogseq____",logseq____"kontradiktionlogseq____",536870921]],[logseq____"^15logseq____",[105,logseq____"^11logseq____",logseq____"Kontradiktionlogseq____",536870921]],[logseq____"^15logseq____",[105,logseq____"^Blogseq____",1696964711252,536870921]],[logseq____"^15logseq____",[105,logseq____"^;logseq____",logseq____"~u6525a067-148b-4ca1-877e-5c1a4322a130logseq____",536870921]],[logseq____"^15logseq____",[106,logseq____"^Klogseq____",1696964711245,536870921]],[logseq____"^15logseq____",[106,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[106,logseq____"^Ylogseq____",logseq____"semantiklogseq____",536870921]],[logseq____"^15logseq____",[106,logseq____"^11logseq____",logseq____"Semantiklogseq____",536870921]],[logseq____"^15logseq____",[106,logseq____"^Blogseq____",1696964711245,536870921]],[logseq____"^15logseq____",[106,logseq____"^;logseq____",logseq____"~u6525a067-fd54-4b13-94ba-695b79f480b0logseq____",536870921]],[logseq____"^15logseq____",[107,logseq____"^Klogseq____",1696964711253,536870921]],[logseq____"^15logseq____",[107,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[107,logseq____"^Ylogseq____",logseq____"logisch äquivalentlogseq____",536870921]],[logseq____"^15logseq____",[107,logseq____"^11logseq____",logseq____"logisch äquivalentlogseq____",536870921]],[logseq____"^15logseq____",[107,logseq____"^Blogseq____",1696964711253,536870921]],[logseq____"^15logseq____",[107,logseq____"^;logseq____",logseq____"~u6525a067-5eea-4e49-9753-0a95ab08032alogseq____",536870921]],[logseq____"^15logseq____",[108,logseq____"^Klogseq____",1696964711248,536870921]],[logseq____"^15logseq____",[108,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[108,logseq____"^Ylogseq____",logseq____"variablelogseq____",536870921]],[logseq____"^15logseq____",[108,logseq____"^11logseq____",logseq____"Variablelogseq____",536870921]],[logseq____"^15logseq____",[108,logseq____"^Blogseq____",1696964711248,536870921]],[logseq____"^15logseq____",[108,logseq____"^;logseq____",logseq____"~u6525a067-abc4-4e12-abe7-046a1707f1eblogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^Klogseq____",1696964711249,536870921]],[logseq____"^15logseq____",[109,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[109,logseq____"^Ylogseq____",logseq____"tabellenregelnlogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^11logseq____",logseq____"Tabellenregelnlogseq____",536870921]],[logseq____"^15logseq____",[109,logseq____"^Blogseq____",1696964711249,536870921]],[logseq____"^15logseq____",[109,logseq____"^;logseq____",logseq____"~u6525a067-b39e-4f91-b829-582ea8649declogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^Klogseq____",1696964711243,536870921]],[logseq____"^15logseq____",[110,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[110,logseq____"^Ylogseq____",logseq____"aussagenlogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^11logseq____",logseq____"Aussagenlogseq____",536870921]],[logseq____"^15logseq____",[110,logseq____"^Blogseq____",1696964711243,536870921]],[logseq____"^15logseq____",[110,logseq____"^;logseq____",logseq____"~u6525a067-6d7f-4701-857b-e804c93ee65flogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^Klogseq____",1696964711248,536870921]],[logseq____"^15logseq____",[111,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[111,logseq____"^Ylogseq____",logseq____"verknüpfungenlogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^11logseq____",logseq____"Verknüpfungenlogseq____",536870921]],[logseq____"^15logseq____",[111,logseq____"^Blogseq____",1696964711248,536870921]],[logseq____"^15logseq____",[111,logseq____"^;logseq____",logseq____"~u6525a067-71c9-45be-9ddb-7e4c18125873logseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^Klogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[112,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[112,logseq____"^Ylogseq____",logseq____"aussageformellogseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^11logseq____",logseq____"Aussageformellogseq____",536870921]],[logseq____"^15logseq____",[112,logseq____"^Blogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[112,logseq____"^;logseq____",logseq____"~u6525a067-e8e2-4ca5-bb91-6028ecc37d89logseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^Klogseq____",1696964711245,536870921]],[logseq____"^15logseq____",[113,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[113,logseq____"^Ylogseq____",logseq____"syntaxlogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^11logseq____",logseq____"Syntaxlogseq____",536870921]],[logseq____"^15logseq____",[113,logseq____"^Blogseq____",1696964711245,536870921]],[logseq____"^15logseq____",[113,logseq____"^;logseq____",logseq____"~u6525a067-08f6-4c7d-a51f-6a02c4a43d7blogseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^Klogseq____",1696964711243,536870921]],[logseq____"^15logseq____",[114,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[114,logseq____"^Ylogseq____",logseq____"verknüpfung von aussagenlogseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^11logseq____",logseq____"Verknüpfung von Aussagenlogseq____",536870921]],[logseq____"^15logseq____",[114,logseq____"^Blogseq____",1696964711243,536870921]],[logseq____"^15logseq____",[114,logseq____"^;logseq____",logseq____"~u6525a067-da26-4ef0-9159-2308ab7bf31elogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^Klogseq____",1696964711253,536870921]],[logseq____"^15logseq____",[115,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[115,logseq____"^Ylogseq____",logseq____"schreibweiselogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^11logseq____",logseq____"Schreibweiselogseq____",536870921]],[logseq____"^15logseq____",[115,logseq____"^Blogseq____",1696964711253,536870921]],[logseq____"^15logseq____",[115,logseq____"^;logseq____",logseq____"~u6525a067-18b3-44ff-a75f-69b1bb23e023logseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^Klogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[116,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[116,logseq____"^Ylogseq____",logseq____"belegunglogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^11logseq____",logseq____"Belegunglogseq____",536870921]],[logseq____"^15logseq____",[116,logseq____"^Blogseq____",1696964711250,536870921]],[logseq____"^15logseq____",[116,logseq____"^;logseq____",logseq____"~u6525a067-fa3d-4dd0-8b8e-79e7802d542elogseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^Klogseq____",1696964711239,536870921]],[logseq____"^15logseq____",[117,logseq____"^@logseq____",false,536870921]],[logseq____"^15logseq____",[117,logseq____"^Ylogseq____",logseq____"grundlagen und diskrete strukturen 1logseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^11logseq____",logseq____"Grundlagen und Diskrete Strukturen 1logseq____",536870921]],[logseq____"^15logseq____",[117,logseq____"^Blogseq____",1696964711239,536870921]],[logseq____"^15logseq____",[117,logseq____"^;logseq____",logseq____"~u6525a067-34cf-41d6-afdd-e26a2b6d7aa1logseq____",536870922]],[logseq____"^15logseq____",[118,logseq____"^Qlogseq____",logseq____"## [[Verknüpfung von Aussagen]]logseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[118,logseq____"^Flogseq____",125,536870921]],[logseq____"^15logseq____",[118,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[118,logseq____"^Vlogseq____",129,536870921]],[logseq____"^15logseq____",[118,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[118,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[118,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[118,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870921]],[logseq____"^15logseq____",[118,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[118,logseq____"^Hlogseq____",114,536870921]],[logseq____"^15logseq____",[118,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[118,logseq____"^;logseq____",logseq____"~u6525a067-0f3f-431a-ac05-fb316ee9660clogseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Qlogseq____",logseq____"[[Wikipedia]]logseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[119,logseq____"^Flogseq____",126,536870921]],[logseq____"^15logseq____",[119,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[119,logseq____"^Vlogseq____",137,536870921]],[logseq____"^15logseq____",[119,logseq____"^Ulogseq____",100,536870921]],[logseq____"^15logseq____",[119,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[119,logseq____"^Hlogseq____",100,536870921]],[logseq____"^15logseq____",[119,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[119,logseq____"^;logseq____",logseq____"~u6525a067-c099-4437-9d59-346d21662f6flogseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Qlogseq____",logseq____"Formeln $p,q$ [[logisch äquivalent]], wenn sie den gleichen [[Wahrheitswerteverlauf]] haben.\\n[[Schreibweise]]: $p\\\\equiv q$logseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[120,logseq____"^Flogseq____",130,536870921]],[logseq____"^15logseq____",[120,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[120,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",98,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",107,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",115,536870921]],[logseq____"^15logseq____",[120,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[120,logseq____"^Hlogseq____",98,536870921]],[logseq____"^15logseq____",[120,logseq____"^Hlogseq____",107,536870921]],[logseq____"^15logseq____",[120,logseq____"^Hlogseq____",115,536870921]],[logseq____"^15logseq____",[120,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[120,logseq____"^;logseq____",logseq____"~u6525a067-af0c-4e4c-a859-25ef2af53515logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Qlogseq____",logseq____"[[Wahrheitswerteverlauf]] einer [[Aussageformel]]: Jede mögliche [[Belegung]] wird ein [[Wahrheitswert]] der [[Formel]] zugeordnet (nach [[Tabellenregeln]])logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[121,logseq____"^Flogseq____",124,536870921]],[logseq____"^15logseq____",[121,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[121,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",98,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",101,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",102,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[121,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",98,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",101,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",102,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",109,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",112,536870921]],[logseq____"^15logseq____",[121,logseq____"^Hlogseq____",116,536870921]],[logseq____"^15logseq____",[121,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[121,logseq____"^;logseq____",logseq____"~u6525a067-898e-428b-ad93-8f373c6531b6logseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Qlogseq____",logseq____"[[Aussagenlogische variable]]: [[Variable]], die den Wert $w$ oder $f$ annimmtlogseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[122,logseq____"^Flogseq____",134,536870921]],[logseq____"^15logseq____",[122,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[122,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",99,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",108,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[122,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",99,536870921]],[logseq____"^15logseq____",[122,logseq____"^Hlogseq____",108,536870921]],[logseq____"^15logseq____",[122,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[122,logseq____"^;logseq____",logseq____"~u6525a067-7410-4ae7-a475-d8c01eed5462logseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Qlogseq____",logseq____"[[Aussageformel]]: Entsteht durch sukzessive [[Verknüpfungen]] wie oben an Variablen ergibt #FIXMElogseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[123,logseq____"^Flogseq____",122,536870921]],[logseq____"^15logseq____",[123,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[123,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",36,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",111,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[123,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[123,logseq____"^Hlogseq____",36,536870921]],[logseq____"^15logseq____",[123,logseq____"^Hlogseq____",111,536870921]],[logseq____"^15logseq____",[123,logseq____"^Hlogseq____",112,536870921]],[logseq____"^15logseq____",[123,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[123,logseq____"^;logseq____",logseq____"~u6525a067-5564-4448-9f75-36beb3a61d28logseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Qlogseq____",logseq____"[[Belegung]] (der Variablen): Zuordnung von $w/f$ an jede [[Variable]] einer [[Aussageformel]]logseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[124,logseq____"^Flogseq____",123,536870921]],[logseq____"^15logseq____",[124,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[124,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",108,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",112,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",116,536870921]],[logseq____"^15logseq____",[124,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[124,logseq____"^Hlogseq____",108,536870921]],[logseq____"^15logseq____",[124,logseq____"^Hlogseq____",112,536870921]],[logseq____"^15logseq____",[124,logseq____"^Hlogseq____",116,536870921]],[logseq____"^15logseq____",[124,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[124,logseq____"^;logseq____",logseq____"~u6525a067-0e9f-41b7-a862-abd771081de5logseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\n\\logseq____"5\\\\text{ ist prim}\\logseq____" logseq____&\\\\quadlogseq____& (w)\\\\\\\\\\n\\logseq____"4\\\\text{ ist prim}\\logseq____" logseq____&logseq____& (f)\\\\\\\\\\n\\logseq____"\\\\text{Jede gerade Zahl }\\\\ge4\\\\notag\\\\\\\\\\n\\\\text{ ist Summe zweier Primzahlen}\\logseq____" logseq____&logseq____& (\\\\text{Aussage, }w\\\\text{ oder }f)\\\\\\\\\\n(\\\\text{Vermutung von Goldback 1742})\\\\text{, }logseq____&logseq____&\\\\text{richtig für gerade Zahlen bis }4*10^{18}\\\\notag\\\\\\\\\\n\\logseq____"\\\\text{Dieser Satz ist falsch}\\logseq____" logseq____&logseq____& (\\\\text{keine Aussage})\\\\\\\\\\n\\logseq____"\\\\text{Die Gleichung } x^2+y^2=z^2 \\\\notag\\\\\\\\\\n\\\\text{ hat eine Lösung }x,y,z\\\\notag\\n\\\\\\\\\\\\text{ aus positiven ganzen Zahlen}\\logseq____" logseq____&logseq____& (w\\\\text{, z.B. }x=3,y=4,z=5)\\\\\\\\\\n\\logseq____"\\\\text{Für }n\\\\ge3\\\\text{ hat die Gleichung }\\\\notag\\\\\\\\\\nx^n+y^n=z^n\\\\text{ eine Lösung}logseq____&logseq____& (f\\\\text{, wie von Fermat 1640 vermutet}\\\\notag\\\\\\\\\\nx,y,z \\\\text{aus positiven ganzen Zahlen}\\logseq____" logseq____&logseq____&\\\\text{und von Wiles 1994 bewiesen})\\\\\\\\\\n\\logseq____"\\\\text{Gott ist tot}\\logseq____" logseq____&logseq____& (\\\\text{Aussage? Wohl kaum?})\\\\\\\\\\n\\logseq____"\\\\text{Nietzsche ist tot}\\logseq____" logseq____&logseq____& (\\\\text{Aussage?}) \\\\\\\\\\n\\logseq____"\\\\text{Die Länder einer Landkarte lassen sich}\\\\notag\\\\\\\\\\n\\\\text{so mit nur vier Farben färben,}\\\\notag\\\\\\\\\\n\\\\text{dass Länder mit einer gemeinsamen}\\\\notag\\\\\\\\\\n\\\\text{Grenzlienie verschieden gefärbt sind.}\\logseq____" logseq____&logseq____& (\\\\text{Aussagge; }w\\\\text{, sog 4-Farben-Satz})\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[125,logseq____"^Flogseq____",127,536870921]],[logseq____"^15logseq____",[125,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[125,logseq____"^Vlogseq____",129,536870921]],[logseq____"^15logseq____",[125,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[125,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[125,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[125,logseq____"^;logseq____",logseq____"~u6525a067-e973-45b2-866c-490d982eeb52logseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Qlogseq____",logseq____"C. Meinel, M. Mundhenk, [[\\logseq____"Mathematische Grundlagen der Informatik\\logseq____", 5. Auflage 2011]]logseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[126,logseq____"^Flogseq____",137,536870921]],[logseq____"^15logseq____",[126,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[126,logseq____"^Vlogseq____",137,536870921]],[logseq____"^15logseq____",[126,logseq____"^Ulogseq____",103,536870921]],[logseq____"^15logseq____",[126,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[126,logseq____"^Hlogseq____",103,536870921]],[logseq____"^15logseq____",[126,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[126,logseq____"^;logseq____",logseq____"~u6525a067-f83e-4538-90f2-f11130f469celogseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Qlogseq____",logseq____"Satz, der wahr oder falsch ist, d.h. der [[Wahrheitswert]] $w$ bzw $f$ hat ($t/f$, $1/0$, $\\\\text{wahr}/\\\\text{falsch}$)logseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[127,logseq____"^Flogseq____",129,536870921]],[logseq____"^15logseq____",[127,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[127,logseq____"^Vlogseq____",129,536870921]],[logseq____"^15logseq____",[127,logseq____"^Ulogseq____",102,536870921]],[logseq____"^15logseq____",[127,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[127,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[127,logseq____"^Hlogseq____",102,536870921]],[logseq____"^15logseq____",[127,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[127,logseq____"^;logseq____",logseq____"~u6525a067-5a1e-48c4-ba7d-f15e2bcbc295logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Qlogseq____",logseq____"Alternativ: $p\\\\equiv q$, falls $p\\\\leftrightarrow q$ [[Tantologie]]logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[128,logseq____"^Flogseq____",120,536870921]],[logseq____"^15logseq____",[128,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[128,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",104,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[128,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[128,logseq____"^Hlogseq____",104,536870921]],[logseq____"^15logseq____",[128,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[128,logseq____"^;logseq____",logseq____"~u6525a067-56d5-4572-ae2f-47c3dd5d2efelogseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Qlogseq____",logseq____"# 1. [[Aussagen]]logseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[129,logseq____"^Flogseq____",137,536870921]],[logseq____"^15logseq____",[129,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[129,logseq____"^Vlogseq____",117,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[129,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[129,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870921]],[logseq____"^15logseq____",[129,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[129,logseq____"^Hlogseq____",110,536870921]],[logseq____"^15logseq____",[129,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[129,logseq____"^;logseq____",logseq____"~u6525a067-a13d-45ba-a623-b1a83e1b4480logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Qlogseq____",logseq____"[[Kontradiktion]]: Formel, die konstant $f$ istlogseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[130,logseq____"^Flogseq____",135,536870921]],[logseq____"^15logseq____",[130,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[130,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",105,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[130,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[130,logseq____"^Hlogseq____",105,536870921]],[logseq____"^15logseq____",[130,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[130,logseq____"^;logseq____",logseq____"~u6525a067-489d-437a-80fb-1577d9c636c8logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiel: Bestimmung des }$[[Wahrheitswerteverlauf]]$\\\\text{ von }(p\\\\rightarrow q)\\\\land(q\\\\rightarrow p)$\\n|$p$|$q$||$p\\\\rightarrow q$|$q\\\\rightarrow p$|$(p\\\\rightarrow q)\\\\land(q\\\\rightarrow p)|$p\\\\leftrightarrow q$|\\n|f|f||w|w|w|w|\\n|f|w||w|f|f|f|\\n|w|f||f|w|f|f|\\n|w|w||w|w|w|w|logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[131,logseq____"^Flogseq____",121,536870921]],[logseq____"^15logseq____",[131,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[131,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",98,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[131,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[131,logseq____"^Hlogseq____",98,536870921]],[logseq____"^15logseq____",[131,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[131,logseq____"^;logseq____",logseq____"~u6525a067-bccd-4bf2-9447-d8b7eeae2d69logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Qlogseq____",logseq____"$\\\\text{Beispiele}$\\n\\\\begin{align}\\np\\\\land q\\\\lor r\\\\\\\\\\n(p\\\\land q)\\\\lor r\\\\\\\\\\np\\\\land (q\\\\lor r)\\\\\\\\\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[132,logseq____"^Flogseq____",136,536870921]],[logseq____"^15logseq____",[132,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[132,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[132,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[132,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[132,logseq____"^;logseq____",logseq____"~u6525a067-5d29-4e1d-b6ee-bf5db4c3493flogseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Qlogseq____",logseq____"$\\\\text{Weitere Beispiel}$\\n\\\\begin{align}\\n(p\\\\rightarrow q)logseq____&\\\\equiv((\\\\neg q)\\\\rightarrow(\\\\neg p))\\\\\\\\\\n(p\\\\land(p\\\\rightarrow q)) logseq____&\\\\rightarrow q logseq____&\\\\quad \\\\text{Tantologie}\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[133,logseq____"^Flogseq____",128,536870921]],[logseq____"^15logseq____",[133,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[133,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[133,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[133,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[133,logseq____"^;logseq____",logseq____"~u6525a067-be1b-4ae3-80ce-090a70e24b17logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Qlogseq____",logseq____"Soweit die \\logseq____"[[Syntax]]\\logseq____", jetzt die [[Semantik]]. Die [[Wahrheitswert]]e\\n ergeben sich aus den Wahrheitswerten von $p$,$q$ gemäß folgender Tabelle ([[Tabellenregeln]]).\\n|$p$|$q$||$p\\\\land q$|$p\\\\lor q$|$\\\\neg p$|$p\\\\rightarrow q$|$p\\\\leftrightarrow q$|\\n|---|----||-----------|---------|---------|-----------------|---------------------|\\n|f|f||f|f|w|w|w|\\n|f|w||f|w|w|w|f|\\n|w|f||f|w|f|f|f|\\n|w|w||w|w|f|w|w|logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[134,logseq____"^Flogseq____",132,536870921]],[logseq____"^15logseq____",[134,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[134,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",102,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",106,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",109,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",113,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[134,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",102,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",106,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",109,536870921]],[logseq____"^15logseq____",[134,logseq____"^Hlogseq____",113,536870921]],[logseq____"^15logseq____",[134,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[134,logseq____"^;logseq____",logseq____"~u6525a067-77be-43da-92f4-d5ab491b56fclogseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Qlogseq____",logseq____"[[Tantologie]]: Formel, die konstant $w$ istlogseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[135,logseq____"^Flogseq____",131,536870921]],[logseq____"^15logseq____",[135,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[135,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",104,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[135,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[135,logseq____"^Hlogseq____",104,536870921]],[logseq____"^15logseq____",[135,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[135,logseq____"^;logseq____",logseq____"~u6525a067-478f-4d1c-b63d-799554bd5daclogseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Qlogseq____",logseq____"Sind $p$ und $q$ [[Aussagen]], so auch\\n\\\\begin{align}\\n(p\\\\land q) logseq____&\\\\quadlogseq____& (\\logseq____"\\\\text{und}\\logseq____")\\\\\\\\\\n(p\\\\lor q) logseq____&logseq____& (\\logseq____"\\\\text{oder}\\logseq____")\\\\\\\\\\n(\\\\neg p) logseq____&logseq____& (\\logseq____"\\\\text{nicht}\\logseq____")\\\\\\\\\\n(p\\\\rightarrow q) logseq____&logseq____& (\\logseq____"\\\\text{impliziert}\\logseq____")\\\\\\\\\\n(p\\\\leftrightarrow q) logseq____&logseq____& (\\logseq____"\\\\text{genau dann wenn}\\logseq____")\\n\\\\end{align}logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[136,logseq____"^Flogseq____",118,536870921]],[logseq____"^15logseq____",[136,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[136,logseq____"^Vlogseq____",118,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",110,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",114,536870921]],[logseq____"^15logseq____",[136,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[136,logseq____"^Hlogseq____",110,536870921]],[logseq____"^15logseq____",[136,logseq____"^17logseq____",true,536870921]],[logseq____"^15logseq____",[136,logseq____"^;logseq____",logseq____"~u6525a067-9abd-4b67-8e1f-6214649cd2cclogseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Qlogseq____",logseq____"# Büchertiplogseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Ologseq____",logseq____"^16logseq____",536870921]],[logseq____"^15logseq____",[137,logseq____"^Flogseq____",117,536870921]],[logseq____"^15logseq____",[137,logseq____"^Xlogseq____",117,536870921]],[logseq____"^15logseq____",[137,logseq____"^Vlogseq____",117,536870921]],[logseq____"^15logseq____",[137,logseq____"^Ulogseq____",117,536870921]],[logseq____"^15logseq____",[137,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870921]],[logseq____"^15logseq____",[137,logseq____"^Jlogseq____",[],536870921]],[logseq____"^15logseq____",[137,logseq____"^17logseq____",false,536870921]],[logseq____"^15logseq____",[137,logseq____"^;logseq____",logseq____"~u6525a067-922a-4949-8c21-715acee6e5bdlogseq____",536870921]],[logseq____"^15logseq____",[139,logseq____"^Klogseq____",1696964711322,536870922]],[logseq____"^15logseq____",[139,logseq____"^@logseq____",false,536870922]],[logseq____"^15logseq____",[139,logseq____"^Ylogseq____",logseq____"grundlagen und diskrete strukturenlogseq____",536870922]],[logseq____"^15logseq____",[139,logseq____"^11logseq____",logseq____"Grundlagen und Diskrete Strukturenlogseq____",536870922]],[logseq____"^15logseq____",[139,logseq____"^Blogseq____",1696964711322,536870922]],[logseq____"^15logseq____",[139,logseq____"^;logseq____",logseq____"~u6525a067-7f5a-4929-876c-4802528b4d7flogseq____",536870927]],[logseq____"^15logseq____",[140,logseq____"^Qlogseq____",logseq____"[[Grundlagen und Diskrete Strukturen 1]]logseq____",536870922]],[logseq____"^15logseq____",[140,logseq____"^Ologseq____",logseq____"^16logseq____",536870922]],[logseq____"^15logseq____",[140,logseq____"^Flogseq____",139,536870922]],[logseq____"^15logseq____",[140,logseq____"^Xlogseq____",139,536870922]],[logseq____"^15logseq____",[140,logseq____"^Vlogseq____",139,536870922]],[logseq____"^15logseq____",[140,logseq____"^Ulogseq____",117,536870922]],[logseq____"^15logseq____",[140,logseq____"^Ulogseq____",139,536870922]],[logseq____"^15logseq____",[140,logseq____"^Hlogseq____",117,536870922]],[logseq____"^15logseq____",[140,logseq____"^17logseq____",true,536870922]],[logseq____"^15logseq____",[140,logseq____"^;logseq____",logseq____"~u6525a067-d1ad-427b-a614-ea26f350044dlogseq____",536870922]],[logseq____"^15logseq____",[142,logseq____"^Klogseq____",1696964711328,536870923]],[logseq____"^15logseq____",[142,logseq____"^@logseq____",false,536870923]],[logseq____"^15logseq____",[142,logseq____"^Ylogseq____",logseq____"logarithmusgesetzelogseq____",536870923]],[logseq____"^15logseq____",[142,logseq____"^11logseq____",logseq____"Logarithmusgesetzelogseq____",536870923]],[logseq____"^15logseq____",[142,logseq____"^Blogseq____",1696964711328,536870923]],[logseq____"^15logseq____",[142,logseq____"^;logseq____",logseq____"~u6525a067-91f6-4a6b-9af6-877121855d5clogseq____",536870923]],[logseq____"^15logseq____",[143,logseq____"^Qlogseq____",logseq____"[[Logarithmusgesetze]]logseq____",536870923]],[logseq____"^15logseq____",[143,logseq____"^Ologseq____",logseq____"^16logseq____",536870923]],[logseq____"^15logseq____",[143,logseq____"^Flogseq____",27,536870923]],[logseq____"^15logseq____",[143,logseq____"^Xlogseq____",27,536870923]],[logseq____"^15logseq____",[143,logseq____"^Vlogseq____",27,536870923]],[logseq____"^15logseq____",[143,logseq____"^Ulogseq____",27,536870923]],[logseq____"^15logseq____",[143,logseq____"^Ulogseq____",142,536870923]],[logseq____"^15logseq____",[143,logseq____"^Hlogseq____",142,536870923]],[logseq____"^15logseq____",[143,logseq____"^17logseq____",true,536870923]],[logseq____"^15logseq____",[143,logseq____"^;logseq____",logseq____"~u6525a067-e2d2-4c2d-8bf9-a12dac80004clogseq____",536870923]],[logseq____"^15logseq____",[144,logseq____"^Qlogseq____",logseq____"logseq____",536870923]],[logseq____"^15logseq____",[144,logseq____"^Ologseq____",logseq____"^16logseq____",536870923]],[logseq____"^15logseq____",[144,logseq____"^Flogseq____",143,536870923]],[logseq____"^15logseq____",[144,logseq____"^Xlogseq____",27,536870923]],[logseq____"^15logseq____",[144,logseq____"^Vlogseq____",27,536870923]],[logseq____"^15logseq____",[144,logseq____"^Ulogseq____",27,536870923]],[logseq____"^15logseq____",[144,logseq____"^17logseq____",true,536870923]],[logseq____"^15logseq____",[144,logseq____"^;logseq____",logseq____"~u6525a067-95de-4766-8001-e39cddce7470logseq____",536870923]],[logseq____"^15logseq____",[157,logseq____"^Klogseq____",1696964711383,536870926]],[logseq____"^15logseq____",[157,logseq____"^@logseq____",false,536870926]],[logseq____"^15logseq____",[157,logseq____"^Ylogseq____",logseq____"programmierung und algorithmenlogseq____",536870926]],[logseq____"^15logseq____",[157,logseq____"^11logseq____",logseq____"Programmierung und Algorithmenlogseq____",536870926]],[logseq____"^15logseq____",[157,logseq____"^Blogseq____",1696964711383,536870926]],[logseq____"^15logseq____",[157,logseq____"^;logseq____",logseq____"~u6525a067-0a72-4f30-b5e4-e506fda9d775logseq____",536870927]],[logseq____"^15logseq____",[158,logseq____"^Klogseq____",1696964711383,536870926]],[logseq____"^15logseq____",[158,logseq____"^@logseq____",false,536870926]],[logseq____"^15logseq____",[158,logseq____"^Ylogseq____",logseq____"programmierung und algorithmen 1logseq____",536870926]],[logseq____"^15logseq____",[158,logseq____"^11logseq____",logseq____"Programmierung und Algorithmen 1logseq____",536870926]],[logseq____"^15logseq____",[158,logseq____"^Blogseq____",1696964711383,536870926]],[logseq____"^15logseq____",[158,logseq____"^;logseq____",logseq____"~u6525a067-a265-41f1-83fa-fd111d9bdd41logseq____",536870926]],[logseq____"^15logseq____",[159,logseq____"^Qlogseq____",logseq____"[[Programmierung und Algorithmen 1]]logseq____",536870926]],[logseq____"^15logseq____",[159,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[159,logseq____"^Flogseq____",157,536870926]],[logseq____"^15logseq____",[159,logseq____"^Xlogseq____",157,536870926]],[logseq____"^15logseq____",[159,logseq____"^Vlogseq____",157,536870926]],[logseq____"^15logseq____",[159,logseq____"^Ulogseq____",157,536870926]],[logseq____"^15logseq____",[159,logseq____"^Ulogseq____",158,536870926]],[logseq____"^15logseq____",[159,logseq____"^Hlogseq____",158,536870926]],[logseq____"^15logseq____",[159,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[159,logseq____"^;logseq____",logseq____"~u6525a067-f4c0-473a-81bd-320c0b6bcaaelogseq____",536870926]],[logseq____"^15logseq____",[160,logseq____"^Qlogseq____",logseq____"# Informationenlogseq____",536870926]],[logseq____"^15logseq____",[160,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[160,logseq____"^Flogseq____",159,536870926]],[logseq____"^15logseq____",[160,logseq____"^Xlogseq____",157,536870926]],[logseq____"^15logseq____",[160,logseq____"^Vlogseq____",157,536870926]],[logseq____"^15logseq____",[160,logseq____"^Ulogseq____",157,536870926]],[logseq____"^15logseq____",[160,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",1],536870926]],[logseq____"^15logseq____",[160,logseq____"^Jlogseq____",[],536870926]],[logseq____"^15logseq____",[160,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[160,logseq____"^;logseq____",logseq____"~u6525a067-a359-4bc1-9c8f-05d757543ce7logseq____",536870926]],[logseq____"^15logseq____",[161,logseq____"^Qlogseq____",logseq____"Bestehquote: 40%logseq____",536870926]],[logseq____"^15logseq____",[161,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[161,logseq____"^Flogseq____",160,536870926]],[logseq____"^15logseq____",[161,logseq____"^Xlogseq____",157,536870926]],[logseq____"^15logseq____",[161,logseq____"^Vlogseq____",160,536870926]],[logseq____"^15logseq____",[161,logseq____"^Ulogseq____",157,536870926]],[logseq____"^15logseq____",[161,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[161,logseq____"^;logseq____",logseq____"~u6525a067-51db-47c5-8a79-cfd2b9e81cablogseq____",536870926]],[logseq____"^15logseq____",[162,logseq____"^Qlogseq____",logseq____"## Bonuspunktelogseq____",536870926]],[logseq____"^15logseq____",[162,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[162,logseq____"^Flogseq____",161,536870926]],[logseq____"^15logseq____",[162,logseq____"^Xlogseq____",157,536870926]],[logseq____"^15logseq____",[162,logseq____"^Vlogseq____",160,536870926]],[logseq____"^15logseq____",[162,logseq____"^Ulogseq____",157,536870926]],[logseq____"^15logseq____",[162,logseq____"^?logseq____",[logseq____"^ logseq____",logseq____"^18logseq____",2],536870926]],[logseq____"^15logseq____",[162,logseq____"^Jlogseq____",[],536870926]],[logseq____"^15logseq____",[162,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[162,logseq____"^;logseq____",logseq____"~u6525a067-3117-4976-8a45-fb179678dc4clogseq____",536870926]],[logseq____"^15logseq____",[163,logseq____"^Qlogseq____",logseq____"Übungsblätter abgebenlogseq____",536870926]],[logseq____"^15logseq____",[163,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[163,logseq____"^Flogseq____",162,536870926]],[logseq____"^15logseq____",[163,logseq____"^Xlogseq____",157,536870926]],[logseq____"^15logseq____",[163,logseq____"^Vlogseq____",162,536870926]],[logseq____"^15logseq____",[163,logseq____"^Ulogseq____",157,536870926]],[logseq____"^15logseq____",[163,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[163,logseq____"^;logseq____",logseq____"~u6525a067-c5f0-4829-a54b-acca837f3bd2logseq____",536870926]],[logseq____"^15logseq____",[164,logseq____"^Qlogseq____",logseq____"Übungsprüfungenlogseq____",536870926]],[logseq____"^15logseq____",[164,logseq____"^Ologseq____",logseq____"^16logseq____",536870926]],[logseq____"^15logseq____",[164,logseq____"^Flogseq____",163,536870926]],[logseq____"^15logseq____",[164,logseq____"^Xlogseq____",157,536870926]],[logseq____"^15logseq____",[164,logseq____"^Vlogseq____",162,536870926]],[logseq____"^15logseq____",[164,logseq____"^Ulogseq____",157,536870926]],[logseq____"^15logseq____",[164,logseq____"^17logseq____",true,536870926]],[logseq____"^15logseq____",[164,logseq____"^;logseq____",logseq____"~u6525a067-3761-4dd7-a81b-6ad722dfd2d6logseq____",536870926]],[logseq____"^15logseq____",[166,logseq____"^Klogseq____",1696964711403,536870927]],[logseq____"^15logseq____",[166,logseq____"^@logseq____",false,536870927]],[logseq____"^15logseq____",[166,logseq____"^Ylogseq____",logseq____"vorlesungs notizenlogseq____",536870927]],[logseq____"^15logseq____",[166,logseq____"^11logseq____",logseq____"Vorlesungs Notizenlogseq____",536870927]],[logseq____"^15logseq____",[166,logseq____"^Blogseq____",1696964711403,536870927]],[logseq____"^15logseq____",[166,logseq____"^;logseq____",logseq____"~u6525a067-ebed-41fc-8e3d-d4e6e0efeb2elogseq____",536870927]],[logseq____"^15logseq____",[167,logseq____"^Qlogseq____",logseq____"[[Auffrischung Mathe]]logseq____",536870927]],[logseq____"^15logseq____",[167,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[167,logseq____"^Flogseq____",166,536870927]],[logseq____"^15logseq____",[167,logseq____"^Xlogseq____",166,536870927]],[logseq____"^15logseq____",[167,logseq____"^Vlogseq____",166,536870927]],[logseq____"^15logseq____",[167,logseq____"^Ulogseq____",92,536870927]],[logseq____"^15logseq____",[167,logseq____"^Ulogseq____",166,536870927]],[logseq____"^15logseq____",[167,logseq____"^Hlogseq____",92,536870927]],[logseq____"^15logseq____",[167,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[167,logseq____"^;logseq____",logseq____"~u6525a067-1edc-41dd-8b4d-bba046adbf4flogseq____",536870927]],[logseq____"^15logseq____",[168,logseq____"^Qlogseq____",logseq____"[[Mathe 1]]logseq____",536870927]],[logseq____"^15logseq____",[168,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[168,logseq____"^Flogseq____",167,536870927]],[logseq____"^15logseq____",[168,logseq____"^Xlogseq____",166,536870927]],[logseq____"^15logseq____",[168,logseq____"^Vlogseq____",166,536870927]],[logseq____"^15logseq____",[168,logseq____"^Ulogseq____",146,536870927]],[logseq____"^15logseq____",[168,logseq____"^Ulogseq____",166,536870927]],[logseq____"^15logseq____",[168,logseq____"^Hlogseq____",146,536870927]],[logseq____"^15logseq____",[168,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[168,logseq____"^;logseq____",logseq____"~u6525a067-bdf1-4ecb-b726-99d634a606aclogseq____",536870927]],[logseq____"^15logseq____",[169,logseq____"^Qlogseq____",logseq____"[[Grundlagen und Diskrete Strukturen]]logseq____",536870927]],[logseq____"^15logseq____",[169,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[169,logseq____"^Flogseq____",168,536870927]],[logseq____"^15logseq____",[169,logseq____"^Xlogseq____",166,536870927]],[logseq____"^15logseq____",[169,logseq____"^Vlogseq____",166,536870927]],[logseq____"^15logseq____",[169,logseq____"^Ulogseq____",139,536870927]],[logseq____"^15logseq____",[169,logseq____"^Ulogseq____",166,536870927]],[logseq____"^15logseq____",[169,logseq____"^Hlogseq____",139,536870927]],[logseq____"^15logseq____",[169,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[169,logseq____"^;logseq____",logseq____"~u6525a067-f447-427b-a56f-879176e27aeblogseq____",536870927]],[logseq____"^15logseq____",[170,logseq____"^Qlogseq____",logseq____"[[Programmierung und Algorithmen]]logseq____",536870927]],[logseq____"^15logseq____",[170,logseq____"^Ologseq____",logseq____"^16logseq____",536870927]],[logseq____"^15logseq____",[170,logseq____"^Flogseq____",169,536870927]],[logseq____"^15logseq____",[170,logseq____"^Xlogseq____",166,536870927]],[logseq____"^15logseq____",[170,logseq____"^Vlogseq____",166,536870927]],[logseq____"^15logseq____",[170,logseq____"^Ulogseq____",157,536870927]],[logseq____"^15logseq____",[170,logseq____"^Ulogseq____",166,536870927]],[logseq____"^15logseq____",[170,logseq____"^Hlogseq____",157,536870927]],[logseq____"^15logseq____",[170,logseq____"^17logseq____",true,536870927]],[logseq____"^15logseq____",[170,logseq____"^;logseq____",logseq____"~u6525a067-4ae9-470a-8792-9c4f02549179logseq____",536870927]]]]]]"</script>
|
|
<script>window.logseq_state="{:ui/theme \"dark\", :config {\"local\" {:shortcuts {}, :default-templates {:journals \"\"}, :feature/enable-journals? false, :query/views {:pprint (fn [r] [:pre.code (pprint r)])}, :editor/preferred-pasting-file? true, :macros {}, :shortcut/doc-mode-enter-for-new-block? false, :favorites [], :ui/show-empty-bullets? false, :file/name-format :triple-lowbar, :preferred-workflow :now, :publishing/all-pages-public? true, :ref/default-open-blocks-level 2, :feature/enable-block-timestamps? false, :start-of-week 6, :ref/linked-references-collapsed-threshold 50, :outliner/block-title-collapse-enabled? false, :commands [], :ui/show-full-blocks? false, :meta/version 1, :hidden [], :default-queries {:journals [{:title \"🔨 NOW\", :query [:find (pull ?h [*]) :in $ ?start ?today :where [?h :block/marker ?marker] [(contains? #{\"NOW\" \"DOING\"} ?marker)] [?h :block/page ?p] [?p :block/journal? true] [?p :block/journal-day ?d] [(>= ?d ?start)] [(<= ?d ?today)]], :inputs [:14d :today], :result-transform (fn [result] (sort-by (fn [h] (get h :block/priority \"Z\")) result)), :group-by-page? false, :collapsed? false} {:title \"📅 NEXT\", :query [:find (pull ?h [*]) :in $ ?start ?next :where [?h :block/marker ?marker] [(contains? #{\"NOW\" \"LATER\" \"TODO\"} ?marker)] [?h :block/page ?p] [?p :block/journal? true] [?p :block/journal-day ?d] [(> ?d ?start)] [(< ?d ?next)]], :inputs [:today :7d-after], :group-by-page? false, :collapsed? false}]}, :ui/auto-expand-block-refs? true, :ui/enable-tooltip? true, :query/result-transforms {:sort-by-priority (fn [result] (sort-by (fn [h] (get h :block/priority \"Z\")) result))}, :property-pages/enabled? true, :block/content-max-length 10000, :ui/show-command-doc? true, :feature/enable-search-remove-accents? true, :default-home {:page \"Vorlesungs Notizen\"}}}}"</script>
|
|
<script type="text/javascript">// Single Page Apps for GitHub Pages
|
|
// https://github.com/rafgraph/spa-github-pages
|
|
// Copyright (c) 2016 Rafael Pedicini, licensed under the MIT License
|
|
// ----------------------------------------------------------------------
|
|
// This script checks to see if a redirect is present in the query string
|
|
// and converts it back into the correct url and adds it to the
|
|
// browser's history using window.history.replaceState(...),
|
|
// which won't cause the browser to attempt to load the new url.
|
|
// When the single page app is loaded further down in this file,
|
|
// the correct url will be waiting in the browser's history for
|
|
// the single page app to route accordingly.
|
|
(function(l) {
|
|
if (l.search) {
|
|
var q = {};
|
|
l.search.slice(1).split('&').forEach(function(v) {
|
|
var a = v.split('=');
|
|
q[a[0]] = a.slice(1).join('=').replace(/~and~/g, '&');
|
|
});
|
|
if (q.p !== undefined) {
|
|
window.history.replaceState(null, null,
|
|
l.pathname.slice(0, -1) + (q.p || '') +
|
|
(q.q ? ('?' + q.q) : '') +
|
|
l.hash
|
|
);
|
|
}
|
|
}
|
|
}(window.location))</script>
|
|
<script src="static/js/main.js"></script>
|
|
<script src="static/js/interact.min.js"></script>
|
|
<script src="static/js/highlight.min.js"></script>
|
|
<script src="static/js/katex.min.js"></script>
|
|
<script src="static/js/html2canvas.min.js"></script>
|
|
<script src="static/js/code-editor.js"></script>
|
|
<script src="static/js/custom.js"></script>
|
|
</body>
|